Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=2+4+6+...+98+100
S=\(\frac{\left[\left(\frac{100-2}{2}+1\right).\left(100+2\right)\right]}{2}=2550\)
S=1+2+3+4+...+2016+2017
S=\(\frac{\left(2017-1+1\right).\left(2017+1\right)}{2}=2035153\)
1.Số lượng số của S= (2017-1)+1=2017 số
tổng=(2016+1).(2016:2)+2017=2 035 153
2.Số lượng số của S=(100-2):2+1=50 số
tổng=(100+2).(50:2)=2 550
S=(1+2)+(2^2+2^3)+(2^4+2^5)+....+(2^99+2^100)
S=3+3.2^2+3.2^4+.....+3.2^99
S=3.(2^2+2^4+.....+2^99)
Vì 3 chia hết 3=>3.(2^2+2^4+....+2^99)
=>S chia hết 3
2S=2+2^2+2^3+2^4+.....+2^101
2S-S=(2+2^2+2^3+2^4+....+2^101)-(1+2+2^2+2^3+2^4+....+2^100)
S=2^101-1
S+1=2^101-1+1=2^101
=>x=101
\(\frac{B}{A}=\frac{\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2016}+\frac{1}{2017}}\)
\(\frac{B}{A}=\frac{\left(\frac{2016}{1}+1\right)+\left(\frac{2015}{2}+1\right)+...+\left(\frac{1}{2016}+1\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}\)
\(\frac{B}{A}=\frac{\frac{2017}{1}+\frac{2017}{2}+...+\frac{2017}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}\)
\(\frac{B}{A}=\frac{2017\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}=2017\div\frac{1}{2017}=4068289\)
Ta có:
A=(1-1/2).(1-1/3).(1-1/4)...(1-1/2016)
=1/2.2/3.3/4...2015/2016
=1.2.3.4....2014.2015/2.3.4....2015.2016(Giống nhau bạn gạch đi)
=1/2016
Vậy A=1/2016
K cho mình nha :D
\(S=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2019}}\)
\(\Rightarrow2S=1+\frac{1}{2}+...+\frac{1}{2^{2018}}\)
\(\Rightarrow2S-S=\left(1+\frac{1}{2}+...+\frac{1}{2^{2018}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2019}}\right)\)
\(\Rightarrow S=1-\frac{1}{2^{2019}}\)
\(S=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2016}\right)\)
\(=\left(\frac{2}{2}-\frac{1}{2}\right)\left(\frac{3}{3}-\frac{1}{3}\right)\left(\frac{4}{4}-\frac{1}{4}\right).....\left(\frac{2016}{2016}-\frac{1}{2016}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2015}{2016}=\frac{1}{2016}\)
\(S=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2015}{2016}\)
\(S=\frac{1\cdot2\cdot3\cdot...\cdot2015}{2\cdot3\cdot4\cdot...\cdot2016}\)
\(S=\frac{1}{2016}\)