Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
21)
\(\left(1+\dfrac{1}{3}\right).\left(1+\dfrac{1}{8}\right).\left(1+\dfrac{1}{15}\right).....\left(1+\dfrac{1}{9999}\right)\\ =\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.....\dfrac{10000}{9999}\\ =\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}.\dfrac{4.4}{3.5}.....\dfrac{100.100}{99.101}\\ =\dfrac{2.3.4.....100}{1.2.3.....99}.\dfrac{2.3.4.....100}{3.4.5.....101}\\ =100.\dfrac{2}{101}\\ =\dfrac{200}{101}\)
Đặt A = 1/2 + 1/3 + 1/6 + 1/10 + 1/15 + ... + 1/36 + 1/45
=> 1/2A = 1/4 + 1/6 + 1/12 + 1/20 + 1/30 + ... + 1/72 + 1/90
= 1/4 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + ... + 1/8.9 + 1/9.10
= 1/4 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/9 - 1/10
= 1/4 + 1/2 - 1/10
= 5/20 + 10/20 - 2/20
= 13/20
=> A = 13/20 : 1/2 = 13/10
Đặt A = 1/2 + 1/3 + 1/6 + 1/10 + 1/15 + ... + 1/36 + 1/45
=> 1/2A = 1/4 + 1/6 + 1/12 + 1/20 + 1/30 + ... + 1/72 + 1/90
= 1/4 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + ... + 1/8.9 + 1/9.10
= 1/4 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/9 - 1/10
= 1/4 + 1/2 - 1/10
= 5/20 + 10/20 - 2/20 = 13/20
=> A = 13/20 : 1/2 = 13/10
Ta co:
\(\frac{1}{2}A=\frac{1}{4}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{72}+\frac{1}{90}\)
\(\Leftrightarrow\frac{1}{2}A=\frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}+\frac{1}{9.10}\)
\(\Leftrightarrow\frac{1}{2}A=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(\Leftrightarrow\frac{1}{2}A=\frac{1}{4}+\frac{1}{2}-\frac{1}{10}=\frac{13}{20}\Rightarrow A=\frac{13}{10}.\)
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{36}+\frac{1}{45}\)
\(A=\frac{2}{4}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{72}+\frac{2}{90}\)
\(A=\frac{2}{2.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+...+\frac{2}{8.9}+\frac{2}{9.10}\)
\(A=2\left(\frac{1}{2.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(A=2.\frac{2}{5}\)
\(A=\frac{4}{5}\)
~ Học tốt ~ K cho mk nhé! Thank you.
A = -1 - 1/3 - 1/6 - 1/10 - 1/15 - ... - 1/1225
A = -(1 + 1/3 + 1/6 + 1/10 + 1/15 + ... + 1/1225)
A = -(2/2 + 2/6 + 2/12 + 2/20 + 2/30 + ... + 2/2450)
A = -2.(1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + ... + 1/49.50)
A = -2.(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + ... + 1/49 - 1/50)
A = -2.(1 - 1/50)
A = -2.49/50
A = -49/25
\(M=\frac{1}{2}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{2004.2005}\)
\(\Leftrightarrow2M=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+.....+\frac{2}{2004.2005}\)
\(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{2004.2005}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{2004}-\frac{1}{2005}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{2005}\right)\)
\(=2.\left(\frac{2005}{4010}-\frac{2}{4010}\right)\)
\(=2.\frac{2003}{4010}\)
\(=\frac{2003}{2005}\)
\(M=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{2}{2004\cdot2005}\)
\(M=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{2004\cdot2005}\)
\(M=2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{2004\cdot2005}\right)\)
\(M=2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2004\cdot2005}\right)\)
\(M=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2004}-\frac{1}{2005}\right)\)
\(M=2\left(\frac{1}{2}-\frac{1}{2005}\right)\)
\(M=2\cdot\frac{2003}{4010}\)
\(M=\frac{2003}{2005}\)