Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=3/2^0+3/2^1+....+3/2^2018
S=3/2.(2/2^0+2/2^1+....+2^2018)
đặt B=2/2^0+2/2^1+....+2^2018
2B=2.(2/2^0+2/2^1+....+2^2018)
2B=1+2/2^0+...+2/2^2017
2B-B=(1+2/2^0+...+2/2^2017)-(2/2^0+2/2^1+....+2^2018)
B=1-2^2018
S=3/2.1-2^2018=3/2^2018
Bài 1:
a) \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
b) ta có: \(A=1+2+2^2+2^3+...+2^{2018}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2019}\)
\(\Rightarrow2A-A=2^{2019}-2\)
\(\Rightarrow A=2^{2019}-2\)
Chúc bn học tốt !!!!!
a, \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{100}\)
\(\Rightarrow2S=2+1+\frac{1}{2}+\frac{1}{2^2}...+\frac{1}{99}\)
\(2S-S=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)
\(\Leftrightarrow2S-S=S=2-\frac{1}{2^{100}}=\frac{2^{101}}{2^{100}}-\frac{1}{2^{100}}=\frac{2^{101}-1}{2^{100}}\)
Đặt \(A=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{90}\)
\(=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\right)+\left(\frac{1}{46}+\frac{1}{47}+...+\frac{1}{90}\right)\)
Đặt \(B=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\)
Ta có: \(\frac{1}{31}>\frac{1}{45}\)
\(\frac{1}{32}>\frac{1}{45}\)
....................
\(\frac{1}{45}=\frac{1}{45}\)
\(\Rightarrow B>\frac{1}{45}.15\)
\(\Rightarrow B>\frac{1}{3}\)
Đặt \(C=\frac{1}{46}+\frac{1}{47}+...+\frac{1}{90}\)
Ta có: \(\frac{1}{46}>\frac{1}{90}\)
\(\frac{1}{47}>\frac{1}{90}\)
.....................
\(\frac{1}{90}=\frac{1}{90}\)
\(\Rightarrow C>\frac{1}{90}.45\)
\(\Rightarrow C>\frac{1}{2}\)
\(\Rightarrow B+C>\frac{1}{3}+\frac{1}{2}\)
Hay \(A>\frac{5}{6}\left(1\right)\)
Lại có: \(A=\left(\frac{1}{31}+...+\frac{1}{59}\right)+\left(\frac{1}{60}+...+\frac{1}{90}\right)\)
Đặt \(D=\frac{1}{31}+...+\frac{1}{59}\)
Ta có: \(\frac{1}{31}< \frac{1}{30}\)
. ...................
\(\frac{1}{59}< \frac{1}{30}\)
\(\Rightarrow D< \frac{1}{30}.60\)
\(\Rightarrow D< \frac{1}{2}\)
Đăt \(E=\frac{1}{60}+...+\frac{1}{90}\)
Ta có: \(\frac{1}{60}=\frac{1}{60}\)
.................
\(\frac{1}{90}< \frac{1}{60}\)
\(\Rightarrow E< \frac{1}{60}.31\)
\(\Rightarrow E< \frac{31}{60}< 1\)
\(\Rightarrow E< 1\)
\(\Rightarrow E+D< 1+\frac{1}{2}\)
Hay \(A< \frac{3}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{5}{6}< A< \frac{3}{2}\)
\(\frac{1}{2^2}>\frac{1}{1.2}=1-\frac{1}{2}\)
\(\frac{1}{3^2}>\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(....\)
\(\frac{1}{2015^2}>\frac{1}{2014.2015}=\frac{1}{2014}-\frac{1}{2015}\)
nên \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2015^2}>1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2004}-\frac{1}{2005}\)
\(=1-\frac{1}{2005}\)
vì \(1-\frac{1}{2005}< 1\)
=> ĐPCM
1) Đặt dãy trên là \(A\)
Theo bài ra ta có :
\(A=\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+\frac{1}{6.6}+...+\frac{1}{100.100}\)
\(\Rightarrow A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\left(đpcm\right)\)
2) \(A=\frac{5^{2018}-2017+1}{5^{2018}-2017}=\frac{5^{2018}-2017}{5^{2018}-2017}+\frac{1}{5^{2018}-2017}=1+\frac{1}{5^{2018}-2017}\)( 1 )
\(B=\frac{5^{2018}-2019+1}{5^{2018}-2019}=\frac{5^{2018}-2019}{5^{2018}-2019}+\frac{1}{5^{2018}-2019}=1+\frac{1}{5^{2018}-2019}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(A=1+\frac{1}{5^{2018}-2017}< 1+\frac{1}{5^{2018}-2019}=B\)
\(\Rightarrow A< B\)
Vậy \(A< B.\)
1) Ta có B =
\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) < \(\frac{1}{1.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)= \(\frac{99}{100}\)
=> B < 1 ( chứ không phải \(\frac{1}{2}\) bạn nhé)
Sai thì thôi chứ mk chỉ làm rờ thôi
A = 1/ 12 +1/22+1/32+. . . +1/502 < 1+ 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5+ . . . + 1/49.50
<=> A < 1 + 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +. . . + 1/49 - 1/50
<=> A< 1 + 1 - 1/50 = 2 - 1/50
Vậy A < 2
Nhớ k nhé bạn ^^
\(2S=2+1+\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{2017}}\)
\(2S-S=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2017}}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{2018}}\right)\)
\(\Rightarrow S=2-\frac{1}{2^{2018}}+1-1+\frac{1}{2}-\frac{1}{2}+.....+\frac{1}{2^{2017}}-\frac{1}{2^{2017}}=2-\frac{1}{2^{2018}}\)\(=\frac{2^{2019}-1}{2^{2018}}\)
bảo bình chứng tỏ S <1 nhé