K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 5 2023

Lời giải:

$S=3(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{41.42})$

$=3(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+....+\frac{42-41}{41.42})$

$=3(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{41}-\frac{1}{42})$

$=3(\frac{1}{2}-\frac{1}{42})=\frac{10}{7}$

18 tháng 4 2021

Sửa đề : a, \(S=\dfrac{3}{1.2}+\dfrac{3}{2.3}+\dfrac{3}{3.4}+\dfrac{3}{4.5}+...+\dfrac{3}{2015.2016}\)

\(=3\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{2015}-\dfrac{1}{2016}\right)\)

\(=3\left(\dfrac{2016-1}{2016}\right)=3.\dfrac{2015}{2016}=\dfrac{6045}{2016}\)

Câu a) sửa đề: 3/5015.2016 ➜ 3/2015.2016

Giải:

a) S=3/1.2 + 3/2.3 + 3/3.4 +3/4.5 +...+ 3/2015.2016

    S=3.(1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 +...+ 1/2015.2016)

    S=3.(1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/2015-1/2016)

    S=3.(1-1/2016)

    S=3. 2015/2016

    S=2015/672

b) Mk chưa biết làm nên bạn tự suy nghĩ nhé, xin lỗi!bucminh

23 tháng 4 2017

Bài này là cơ bản luôn đó:
= 3.(1/1.2 + 1/2.3+...)
= 3.(1/1-1/2+1/2-1/3...)
(tự viết nốt và tính)

31 tháng 3 2017

\(\frac{3}{2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{17.18}\)

\(=\frac{3.1}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{17.18}\)

\(=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{17.18}\right)\)

\(=3.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{17}-\frac{1}{18}\right)\)

\(=3.\left(1-\frac{1}{18}\right)\)

\(=3.\frac{17}{18}\)

\(=\frac{17}{6}\)

31 tháng 3 2017

cùng hình nè

c) Đặt \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)

Ta có: \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)

\(\Leftrightarrow3A=3\cdot\left(1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\right)\)

\(\Leftrightarrow3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+99\cdot100\cdot\left(101-98\right)\)

\(\Leftrightarrow3\cdot A=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-2\cdot3\cdot4+...+98\cdot99\cdot100-98\cdot99\cdot100+99\cdot100\cdot101\)

\(\Leftrightarrow3\cdot A=99\cdot100\cdot101\)

\(\Leftrightarrow A=33\cdot100\cdot101=333300\)

 

b) Ta có: \(1+2-3-4+...+97+98-99-100\)

\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(97+98-99-100\right)\)

\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)

\(=-4\cdot25=-100\)

6 tháng 2 2017

Lời giải 1 :

Nhận xét : Khoảng cách giữa 2 thừa số trong mỗi số hạng là 1. Nhân 2 vế của A với 3 lần khoảng cách này ta được :

3A = 3.(1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10)

    = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + 4.5.(6 - 3) + 5.6.(7 - 4) + 6.7.(8 - 5) + 7.8.(9 - 6) + 8.9.(10 - 7) + 9.10.(11 - 8)

    = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + 3.4.5 - … + 8.9.10 - 8.9.10 + 9.10.11

    = 9.10.11 = 990.

A = 990/3 = 330

Ta chú ý tới  đáp số  990 = 9.10.11, trong đó 9.10 là số hạng cuối cùng của A và 11 là số tự nhiên kề sau của 10, tạo thành tích ba số tự nhiên liên tiếp. Ta cã kết quả tæng qu¸t sau :

  A = 1.2 + 2.3 +  … + (n - 1).n = (n - 1).n.(n + 1)/3

Lời giải khác :

Lời giải 2 :

3.A = 3.(1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10)

= 3.(0.1 + 1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10)

= [1.(0 + 2) + 3.(2 + 4) + 5.(4 + 6) + 7.(6 + 8) + 9.(8 + 10)].3

 = 3.(1.1.2 + 3.3.2 + 5.5.2 + 7.7.2 +9.9.2) = (12 + 32 + 52 + 72 + 92).2.3

= (12 + 32 + 52 + 72 + 92).6 = 990 = 9.10.11

Ta chưa biết cách tính tổng bình phương các số lẻ liên tiếp bắt đầu từ 1, nhưng liên hệ với lời giải 1, ta có :

(12 + 32 + 52 + 72 + 92).6 = 9.10.11, hay

(12 + 32 + 52 + 72 + 92) = 9.10.11/6 

6 tháng 2 2017

THAM KHẢO NHA CÁC BẠN

22 tháng 7 2021

`S = 1.2 + 2.3 + 3.4 + 4.5 + ... + 99.100.`

`3S =  1.2.3 + 2.3.(4-1) + 3.4.(5-4) + 4.5.(6-3) + ... + 99.100.(101-98)`

`3S =  1.2.3 + 2.3.4-1.2.3 + 3.4.5-4.5.6 + 4.5.6-3.4.5 + ... + 99.100.101-98.99.100`

`3S =  99.100.101`

`S = 33.100.101`

`S = 333300`

3S=1.2(3-0)+2.3(4-1)+.....+99.100(101-98)

=1.2.3-0.1.2+2.3.4-1.2.3+4.5.6-2.3.4+....+99.100.101-98-99-100

=99.100.101

S=33.100.101

=333300

15 tháng 2 2016

=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + .... + 2011.2012.3

=> 3S = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + .... + 2011.2012.( 2013 - 2010 )

=> 3S = 1.2.3 + 2.3.4 - 1.2.3 + .... + 2011.2012.2013 - 2010.2011.2012

=> 3S = ( 1.2.3 - 1.2.3 ) + ( 2.3.4 - 2.3.4 ) + .... + ( 2010.2011.2012 - 2010.2011.2012 ) + 2011.2012.2013

=> 3S = 2011.2012.2013

=> S = ( 2011.2012.2013 ) : 3

15 tháng 2 2016

3S=1.2.3+2.3.(4-1)+...............+2011.2012.(2013-2010)

3S=1.2.3+2.3.4-1.2.3+...............+2011.2012.2013-2010.2011.2012

3S=2011.2012.2013

S=2011.2012.2013:3

S=2714954572

26 tháng 11 2015

3S = 2.3.(4-1) + 3.4.(5-2)+4.5.(6-3) +....+999.1000.(1001-998)

3S = 2.3.4-1.2.3+3.4.5-2.3.4 +4.5.6-3.4.5+.........+999.1000.1001- 998.999.1000

3S =999.1000.1001 - 1.2.3

S =333.1000.1001- 2= 333332998