Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(100+98+96+...+2-97-95-93-...-3\)
= \(100+98+\left(96-97\right)+\left(94-95\right)+...+\left(2-3\right)\)
= \(100+98-95\) = \(103\)
b) \(2-4-6+8+10-12-14+16+...-102+104\)
= \(\left(2-4\right)+\left(-6+8\right)+\left(10-12\right)+\left(-14+16\right)+...+\left(-102+104\right)\)
= \(-2+2-2+2-2+...+2\) = \(0\)
c) \(1+2-3-4+5+6-7-8+9+10-11-12+...-111-112+113+114\)
= \(\left(1+2\right)-\left(3+4\right)+\left(5+6\right)-\left(7+8\right)+...\left(113+114\right)\)
= \(3-7+11-15+19-23+...+219-223+227\)
= \(\left(3-7\right)+\left(11-15\right)+\left(19-23\right)+...+\left(219-223\right)+227\)
= \(-4-4-4-4-...-4+227\)
= \(54\left(-4\right)+227\) = \(-216+227\) = \(11\)
Giải:
\(A=\dfrac{9}{1.2}+\dfrac{9}{2.3}+\dfrac{9}{3.4}+...+\dfrac{9}{98.99}+\dfrac{9}{99.100}\)
\(A=9.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)
\(A=9.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(A=9.\left(1-\dfrac{1}{100}\right)\)
\(A=9.\dfrac{99}{100}\)
\(A=\dfrac{891}{100}\)
\(A=5-5^2+5^3-5^4+...-5^{98}+5^{99}\)
\(5A=5\left(5-5^2+5^3-5^4+...-5^{98}+5^{99}\right)\)
\(5A=5^2-5^3+5^4-5^5+...-5^{99}+5^{100}\)
\(5A+A=\left(5^2-5^3+...-5^{99}+5^{100}\right)+\left(5-5^2+...-5^{98}+5^{99}\right)\)
\(6A=5^{100}+5\Rightarrow A=\dfrac{5^{100}+5}{6}\)
\(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{99^2}\right)\left(1-\dfrac{1}{100^2}\right)\)
\(=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)...\left(1-\dfrac{1}{99}\right)\left(1+\dfrac{1}{99}\right)\left(1-\dfrac{1}{100}\right)\left(1+\dfrac{1}{100}\right)\)
\(=\dfrac{1}{2}.\dfrac{3}{2}.\dfrac{2}{3}.\dfrac{4}{3}...\dfrac{98}{99}.\dfrac{100}{99}.\dfrac{99}{100}.\dfrac{101}{100}\)
\(=\dfrac{1.2...98.99}{2.3...99.100}.\dfrac{3.4...100.101}{2.3...99.100}\)
\(=\dfrac{1}{100}.\dfrac{101}{2}=\dfrac{101}{200}\)
a, 1-2+3-4+...+99-100
= (1-2)+(3-4)+...+(99-100)
= -1 + (-1) +...+ (-1)
= -1 x 50
= -50
b, 1+2-3-4+5+6-...+97+98-99-100
= (1+2-3-4) + (5+6-7-8) + ... + (97+98-99-100)
= -4 +( -4) + .... + (-4)
= -4 x 25
= -100