Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
2.S=\(\frac{3}{2^2}+\frac{3}{2^3}+...+\frac{3}{2^{10}}\)
2.S-S=\(\left(\frac{3}{2^2}+\frac{3}{2^3}+...+\frac{3}{2^{10}}\right)-\left(\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\)
=>S=\(\frac{3}{2^{10}}-\frac{3}{2}\)
\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}=3\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
\(=3\left(2-1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2^2}+...+\frac{1}{2^8}-\frac{1}{2^9}\right)=3\left(2-\frac{1}{2^9}\right)=6-\frac{3}{2^9}\)
Lời giải chi tiết:
Có: .
.
Trừ vế với vế của hai biểu thức trên và triệt tiêu các hạng tử giống nhau, ta được:
, suy ra .
Ta có: S = 3+3/2+3/2^2+3/2^3+...+3/2^9
1/2.S = 3/2+3/2^2+3/2^3+3/2^4+...+3/2^10
\(\Rightarrow\) S-1/2.S = 3 - 3/2^10
\(\Rightarrow\) 1/2.S = 3 - 3/2^10
\(\Rightarrow\) S = (3 - 3/2^10) : 1/2
\(\Rightarrow\) S = 6 - 6/2^10
Nếu đúng thì cho mk biết nha
\(S=3+\frac{3}{2}+\frac{3}{2^2}+....+\frac{3}{2^9}\)
\(S=3.\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^9}\right)\)
Đặt \(N=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^9}\)
\(\Rightarrow2N-N=\left(2+1+\frac{1}{2}+...+\frac{1}{2^8}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^9}\right)\)
\(\Rightarrow N=2-\frac{1}{2^9}\)
Khi đó \(S=3.N=3.\left(2-\frac{1}{2^9}\right)=6-\frac{3}{2^9}=\frac{3069}{512}\)
\(S=3\left(1+\frac{1}{2^{ }}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
\(2S=3\left(\frac{2}{2^0}+\frac{2}{2^1}+\frac{2}{2^2}+...+\frac{2}{2^9}\right)=3\left(2+1+\frac{1}{2^{ }}+...+\frac{1}{2^8}\right)\)\(2S-S=S=3\left(2+1+\frac{1}{2^1}+...+\frac{1}{2^8}\right)-3\left(1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)=3.\left(2-\frac{1}{2^9}\right)=3.\frac{2^{10}-1}{2^9}\)
dsad221371áadsadsada