Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(S=2^{2015}-2^{2014}-..............-2-1\)
\(\Leftrightarrow S=2^{2015}-\left(2^{2014}+2^{2013}+...........+2+1\right)\)
Đặt :
\(A=2^{2014}+2^{2013}+.........+2+1\)
\(\Leftrightarrow2A=2^{2015}+2^{2014}+.............+2\)
\(\Leftrightarrow2A-A=\left(2^{2015}+2^{2014}+..........+2\right)-\left(2^{2014}+2^{2013}+.........+1\right)\)
\(\Leftrightarrow A=2^{2015}-1\)
\(\Leftrightarrow S=2^{2015}-\left(2^{2015}+1\right)\)
\(\Leftrightarrow S=2^{2015}-2^{2015}+1\)
\(\Leftrightarrow S=0+1=1\)
\(S=2^{2015}-2^{2014}-2^{2013}-...2-1\)
\(2S=2^{2015}-2^{2014}-2^{2013}-...-2\)
\(2S-S=2^{2015}-2^{2014}-2^{2014}-2^{2013}+2^{2013}-...-2+2+1\)
\(S=2^{2015}-2.2^{2014}+1\)
\(S=2^{2015}-2^{2015}+1=1\)
Tham khảo, chúc bạn học giỏi! Haizzz
Theo đầu bài ta có:
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}+\frac{1}{2015}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1007}\right)\)
\(=\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2015}\)
\(\Rightarrow S=P\)
Vậy ( S - P )2016 = 02016 = 0
2 S = 22016 - ( 22015 + 2 2014 + 22013 +.....+ 23 + 2 2 + 2 )
2S - S = 2 2016 + 1
S = 22015- 22014- 22013-.......-22-21-20
2S = 22016 - 22015 -22014 - 22013 -..........- 23 -22 -21
2S -S = 22016 -22015 -22014 -22013 -....- 23-22 -21 - 22015 + 22014 + 22013 +.....+ 23 +22+21+20
= 22016 - 2x22015 + 20
= 20=1
Ta có :
\(S=2^{2015}-2^{2014}-...-2-1\)
\(S=2^{2015}-\left(2^{2014}+...+2+1\right)\)
Đặt \(A=2^{2014}+...+2+1\) ta có :
\(2A=2^{2015}+...+2^2+2\)
\(2A-A=\left(2^{2015}+...+2^2+2\right)-\left(2^{2014}+...+2+1\right)\)
\(A=2^{2015}-1\)
\(\Rightarrow\)\(S=2^{2015}-A=2^{2015}-\left(2^{2015}-1\right)=2^{2015}-2^{2015}+1=1\)
Vậy \(S=1\)
Chúc bạn học tốt ~