K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2017

bạn chịu khó suy nghĩ chút sẽ ra bài này dễ mà

14 tháng 3 2017

bài này có giá trị ko bn?

16 tháng 3 2017

vì chứng minh 3 điểm A,G,i thẳng hàng

16 tháng 3 2017

S = 3/4000

27 tháng 10 2016

Đặt \(x+2y+3z=A\)

Áp dụng tính chất của dãy tỉ số bằng nhau có :

\(A=\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}=\frac{x+2y+2y+3z+3z+x}{x+2y+2y+3z+3z+x-3-3-3}\)

\(\Rightarrow A=\frac{2A}{2A-9}\)

\(\Rightarrow\frac{2}{2A-9}=1\)

\(\Rightarrow2A-9=2\)

\(\Rightarrow A=\frac{11}{2}\)

Cũng áp dụng tính chất của dãy tỉ số bằng nhau và có :

  • \(A=\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}\)

\(=\frac{\left(x+2y\right)+\left(2y+3z\right)-\left(3z+x\right)}{\left(2y+3z-3\right)+\left(3z+x-3\right)-\left(x+2y-3\right)}=\frac{4y}{4y-3}=\frac{11}{2}\)

\(\Rightarrow2.\left(4y\right)=11.\left(4y-3\right)\)

\(\Rightarrow8y=44y-33\)

\(\Rightarrow36y=33\)

\(\Rightarrow y=\frac{11}{12}\)

  • \(A=\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}\)

\(=\frac{\left(x+2y\right)-\left(2y+3z\right)+\left(3z+x\right)}{\left(2y+3z-3\right)-\left(3z+x-3\right)+\left(x+2y-3\right)}=\frac{2x}{2x-3}=\frac{11}{2}\)

\(\Rightarrow2.\left(2x\right)=11\left(2x-3\right)\)

\(\Rightarrow4x=22x-33\)

\(\Rightarrow18x=33\)

\(\Rightarrow x=\frac{33}{18}=\frac{11}{6}\)

\(\Rightarrow3z=A-x-2y=\frac{11}{2}-\frac{11}{6}-\frac{2.11}{12}=\frac{11}{6}\)

\(\Rightarrow z=\frac{11}{6}:3=\frac{11}{18}\)

Vậy ...

28 tháng 10 2016

Cho mình bổ sung : \(TH2:A=0\)

\(\Rightarrow2x=4y=6z=0\)

\(\Rightarrow x=y=z=0\)

Vậy ....