K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

Ta có

\(A=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)+\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}\right)+\left(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)+\left(\frac{1}{15}+\frac{1}{16}\right)\)

Vì \(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}< \frac{1}{6}.3=\frac{1}{2}\)

    \(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}< \frac{1}{9}.3=\frac{1}{3}\)

   \(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}< \frac{1}{12}.3=\frac{1}{4}\)

   \(\frac{1}{15}+\frac{1}{16}< \frac{1}{10}.2=\frac{1}{5}\)

=> \(S< 2\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)< 2\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)=3\)

=> S<3 (1) 

Lập luận tương tự ta có

\(S>2\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)>2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)=2\)

=> S>2 (2)

Từ (1) và (2) ta có 2 < A < 3. Vậy A không phải là số tự nhiên.

5 tháng 2 2020

a) \(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)

\(=1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)

=> 7S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}\)

Lấy 7S trừ S ta có : 

7S - S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}-\left[1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\right]\)

6S = \(7-1-1+\left(\frac{1}{7}\right)^{2007}=5+\left(\frac{1}{7}\right)^{2007}\Rightarrow S=\frac{5+\left(\frac{1}{7}\right)^{2007}}{6}\)

15 tháng 3 2020

S1\(\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+...+\frac{127}{128}\)

2S= 1 + \(\frac{3}{2}+\frac{7}{4}+\frac{15}{8}+\frac{31}{16}+\frac{63}{32}+\frac{127}{64}\)
2S1 - S1 = S1 = 1 + (1 + 1 + 1 + 1 + 1 + 1) - \(\frac{127}{128}\)= 6 + \(\frac{1}{128}\)
=> S = S1 - 6 = 6 + \(\frac{1}{128}\)- 6 = \(\frac{1}{128}\)

\(S=\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\frac{31}{32}+\frac{63}{64}+\frac{127}{128}-6\)

\(S=\frac{1}{2}+\left(\frac{3}{4}+\frac{7}{8}\right)+\left(\frac{15}{16}+\frac{31}{32}\right)+\left(\frac{63}{64}+\frac{127}{128}\right)-6\)

\(S=\frac{1}{2}+\frac{13}{8}+\frac{61}{32}+\frac{253}{128}-6\)

\(S=\frac{64}{128}+\frac{208}{128}+\frac{244}{128}+\frac{253}{128}-6\)

\(S=\frac{769}{128}-6\)

\(S=\frac{769}{128}-\frac{768}{128}\)

\(S=\frac{1}{128}\)

hok tốt!!

18 tháng 6 2017

Ta có :

\(S=\left(\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\frac{31}{32}+\frac{63}{64}+\frac{127}{128}\right)-6\)

\(S=\left(\frac{64}{128}+\frac{102}{128}+\frac{112}{128}+\frac{120}{128}+\frac{124}{128}+\frac{126}{128}+\frac{127}{128}\right)-6\)

\(S=\frac{64+102+112+120+124+126+127}{128}-6\)

\(S=\frac{775}{128}-6\)

\(S=\frac{775}{128}-\frac{768}{128}\)

\(S=\frac{7}{128}\)

18 tháng 6 2017

S=1/2+3/4+7/8+15/16+31/32+63/64+127/128 -6

S= 1-1/2 + 1-1/4 + 1-1/8 + 1-1/16 + 1-1/32 + 1-1/64+ 1-1/128 - 6

S= (1+1+1+1+1+1+1-6)- (1/2+1/4+1/8+1/16 + 1/32+1/64+1/128)

S= 1- 111/128

S= 17/128

(Làm lụi nha bn)

11 tháng 12 2019

Bài 1:

a) \(\left(\frac{9}{25}-2.18\right):\left(3\frac{4}{5}+0,2\right)\)

\(=\left(\frac{9}{25}-36\right):\left(\frac{19}{5}+\frac{1}{5}\right)\)

\(=\left(\frac{9}{25}-\frac{900}{25}\right):4\)

\(=-\frac{891}{25}.\frac{1}{4}\)

\(=-\frac{891}{100}\)

b) \(\frac{3}{8}.19\frac{1}{3}-\frac{3}{8}.33\frac{1}{3}\)

\(=\frac{3}{8}.\frac{58}{3}-\frac{3}{8}.\frac{100}{3}\)

\(=\frac{3}{8}\left(\frac{58}{3}-\frac{100}{3}\right)\)

\(=\frac{3}{8}\left(-\frac{42}{3}\right)\)

\(=\frac{3}{8}.\left(-14\right)\)

\(=-\frac{21}{4}\)

c) \(1\frac{4}{23}+\frac{5}{21}-\frac{4}{23}+0,5+\frac{16}{21}\)

\(=\frac{27}{23}+\frac{5}{21}-\frac{4}{23}+\frac{1}{2}+\frac{16}{21}\)

\(=\frac{27}{23}+\frac{5}{21}+\left(-\frac{4}{23}\right)+\frac{1}{2}+\frac{16}{21}\)

\(=\left[\frac{27}{23}+\left(-\frac{4}{23}\right)\right]+\left(\frac{5}{21}+\frac{16}{21}\right)+\frac{1}{2}\)

\(=1+1=2\)

d) \(\frac{21}{47}+\frac{9}{45}+\frac{26}{47}+\frac{4}{5}\)

\(=\frac{21}{47}+\frac{9}{45}+\frac{26}{47}+\frac{36}{45}\)

\(=\left(\frac{21}{47}+\frac{26}{47}\right)+\left(\frac{9}{45}+\frac{36}{45}\right)\)

\(=1+1=2\)

16 tháng 9 2017

Ta có : \(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-.....-\frac{1}{1024}\)

\(=\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+.....+\frac{1}{1024}\right)\)

Đặt  \(A=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+.....+\frac{1}{1024}\)

=> \(2A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+.....+\frac{1}{512}\)

=> \(2A-A=\frac{1}{2}-\frac{1}{1024}\)

Thay A vào ta có : \(\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+.....+\frac{1}{1024}\right)\)

\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{1024}=\frac{1}{1024}\)

16 tháng 9 2017

Jenny123 tham khảo nhé

Đặt tổng trên là A, ta có:

\(A.2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)

\(A.2-A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{512}-"\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\)

\(\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}"\)

\(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)

\(-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-\frac{1}{32}-\frac{1}{64}-\frac{1}{128}-\frac{1}{256}-\frac{1}{512}-\frac{1}{1024}\)

\(A=1-\frac{1}{1024}=\frac{1023}{1024}\)

P/s: Bn xem lại đề nha