K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

các bạn vaof trả lời hộ mk

mk đang cần gấp

20 tháng 3 2019

Dấu chấm(.) đó là dấu nhân ạ

12 tháng 1 2020

a) \(x^3-6x^2-9x+14=0\)

\(\Leftrightarrow x^3-8x^2+2x^2+7x-16x+14=0\)

\(\Leftrightarrow\left(x^3-8x^2+7x\right)+\left(2x^2-16x+14\right)=0\)

\(\Leftrightarrow x\left(x^2-8x+7\right)+2\left(x^2-8x+7\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-8x+7\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-7x-x+7\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[x\left(x-7\right)-\left(x-7\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x-7\right)=0\)

\(\Leftrightarrow x\in\left\{-2;1;7\right\}\)

AH
Akai Haruma
Giáo viên
12 tháng 1 2020

Lời giải:

a)

$x^3-6x^2-9x+14=0$

$\Leftrightarrow x^3-x^2-5x^2+5x-14x+14=0$

$\Leftrightarrow x^2(x-1)-5x(x-1)-14(x-1)=0$

$\Leftrightarrow (x-1)(x^2-5x-14)=0$

$\Leftrightarrow (x-1)(x^2-7x+2x-14)=0$

$\Leftrightarrow (x-1)[x(x-7)+2(x-7)]=0$

$\Leftrightarrow (x-1)(x+2)(x-7)=0$

$\Rightarrow x=1; x=-2$ hoặc $x=7$

b)

Bạn tham khảo tại đây:

Câu hỏi của Lương Đức Hưng - Toán lớp 8 | Học trực tuyến

a: \(=2x^3-3x-5x^3-x^2+x^2=-3x^3-3x\)

b: \(=3x^2-6x-5x+5x^2-8x^2+24\)

=-11x+24

8 tháng 12 2019

\(5x^2+5y^2+8xy+2x-2y+2=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2-2y+1\right)+4\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+4\left(x+y\right)^2=0\)

\(\Rightarrow x=-1;y=1\)

Khi đó:

\(M=\left(1-1\right)^{2010}+\left(2-1\right)^{2011}+\left(1-1\right)^{2012}\)

\(=1\)

2 tháng 3 2017

Câu 1: Đặt a/x là m; b/y là n; c/z là p, ta có: m + n + p = 2; 1/m + 1/n + 1/p = 0. Tìm m2 + n2 + p2 ?

Từ 1/m + 1/n + 1/p = 0

=> mnp(1/m + 1/n + 1/p) = 0
<=> mn + np + mp = 0

Mặt khác, ta có (m + n + p)2 = m2 + n2 + p2 + 2(mp + np + mp) = 4

Mà mn + np + mp = 0 => m2 + n2 + p2 + 0 = 4

Trả lời: Vậy a2/x2 + b2/y2 + c2/z2 = 4

3 tháng 3 2017

Cảm ơn bạn nha !

8 tháng 3 2016

\(1.\)   Với mọi  \(x+y+z=0\)  \(\left(1\right)\), ta có:  \(\left(x^2+y^2+z^2\right)^2=2\left(x^4+y^4+z^4\right)\)   \(\left(2\right)\)

Thật vậy,  từ  \(\left(1\right)\)  \(\Rightarrow\)  \(x=-\left(y+z\right)\)

                              \(\Leftrightarrow\)  \(x^2=\left[-\left(y+z\right)\right]^2\)

                              \(\Leftrightarrow\)  \(x^2=y^2+2yz+z^2\)

                              \(\Leftrightarrow\)  \(x^2-y^2-z^2=2yz\)

                              \(\Leftrightarrow\)  \(\left(x^2-y^2-z^2\right)^2=4y^2z^2\)

                              \(\Leftrightarrow\)   \(x^4+y^4+z^4-2x^2y^2+2y^2z^2-2x^2z^2=4y^2z^2\)

                              \(\Leftrightarrow\)   \(x^4+y^4+z^4=4y^2z^2+2x^2y^2-2y^2z^2+2x^2z^2\)

                              \(\Leftrightarrow\)  \(x^4+y^4+z^4=2\left(x^2y^2+y^2z^2+x^2z^2\right)\)  \(\left(3\right)\)

Cộng  \(x^4+y^4+z^4\)  vào hai vế của đẳng thức  \(\left(3\right)\), ta được đẳng thức \(\left(2\right)\)

Vậy, đẳng thức  \(\left(2\right)\)  đã được chứng minh với mọi  \(x+y+z=0\) 

Khi đó,  \(M=2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2=1\)

Do đó,  giá trị  \(M=1\)

                                                              -Charlotte-

8 tháng 3 2016

Nhờ mọi người ghi giúp mình cách giải nhé! Cảm ơn mọi người nhiều.