Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{105}+\dfrac{1}{120}\)
\(M=2.\left(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+...+\dfrac{1}{240}\right)\)
\(M=2.\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{15.16}\right)\)
\(M=2.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)
\(M=2.\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)
\(M=2.\dfrac{3}{16}\)
\(M=\dfrac{3}{8}\)
Vậy \(\dfrac{1}{3}< M< \dfrac{1}{2}\)
Ta có:
\(\dfrac{1}{3}\times\dfrac{12}{12}=\dfrac{12}{36};\)
\(\dfrac{1}{6}\times\dfrac{6}{6}=\dfrac{6}{36};\)
\(\dfrac{1}{10}\times\dfrac{3}{3}=\dfrac{3}{30};\)
\(\dfrac{1}{15}\times\dfrac{2}{2}=\dfrac{2}{30};\)
\(\dfrac{1}{21}\times\dfrac{4}{4}=\dfrac{4}{84};\)
\(\dfrac{1}{28}\times\dfrac{3}{3}=\dfrac{3}{84};\)
\(A=\dfrac{12}{36}+\dfrac{6}{36}+\dfrac{3}{30}+\dfrac{2}{30}+\dfrac{4}{84}+\dfrac{3}{84}+\dfrac{1}{36}\)
\(=\left(\dfrac{12}{36}+\dfrac{6}{36}+\dfrac{1}{36}\right)+\left(\dfrac{3}{30}+\dfrac{2}{30}\right)+\left(\dfrac{4}{84}+\dfrac{3}{84}\right)\)
\(=\dfrac{19}{36}+\dfrac{5}{30}+\dfrac{7}{84}\)
\(=\dfrac{19}{36}+\dfrac{1}{6}+\dfrac{1}{12}\)
\(=\dfrac{19}{36}+\dfrac{6}{36}+\dfrac{3}{36}\)
\(=\dfrac{28}{36}=\dfrac{7}{9}\)
Vậy: \(A=\dfrac{7}{9}\)
A =\(2.\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+......+\dfrac{1}{156}\right)\)
A =\(2.\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+..........+\dfrac{1}{12.13}\right)\)
A =2.\(\left(\dfrac{1}{3}-\dfrac{1}{13}\right)\)
A=\(2.\dfrac{10}{39}=\dfrac{20}{39}\)
\(F=\dfrac{5}{6}+6\dfrac{5}{6}\left(11\dfrac{5}{20}-9\dfrac{1}{4}\right):8\dfrac{1}{3}\)
\(F=\dfrac{5}{6}+\dfrac{41}{6}\left(\dfrac{225}{20}-\dfrac{37}{4}\right):\dfrac{25}{3}\)
\(F=\dfrac{5}{6}+\dfrac{41}{6}.2.\dfrac{3}{25}\)
\(F=\dfrac{5}{6}+\dfrac{41}{25}.\dfrac{3}{25}\)
\(F=\dfrac{5}{6}+\dfrac{41}{25}\)
\(F=\dfrac{371}{150}\)
\(D=\left(\dfrac{136}{15}-\dfrac{28}{5}+\dfrac{62}{10}\right)\times\dfrac{21}{24}\)
\(D=\left(\dfrac{272}{30}-\dfrac{168}{30}+\dfrac{186}{30}\right)\times\dfrac{21}{24}\)
\(D=\dfrac{290}{30}\times\dfrac{21}{24}\)
\(D=\dfrac{29}{3}\times\dfrac{7}{8}\)
\(D=\dfrac{203}{24}\)
=\(\dfrac{1}{3.2}+\dfrac{1}{2.5}+\dfrac{1}{5.3}+\dfrac{1}{3.7}+\dfrac{1}{7.4}+\dfrac{1}{4.9}+\dfrac{1}{9.5}\)=\(\dfrac{1}{3}+\dfrac{1}{5}\)
=\(\dfrac{8}{15}\)Gọi A = \(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}\)
\(\dfrac{1}{2}\)A = \(\dfrac{1}{2}.\left(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}\right)\)
\(\dfrac{1}{2}\)A = \(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)
\(\dfrac{1}{2}\)A = \(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
\(\dfrac{1}{2}\)A = \(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\dfrac{1}{2}\)A = \(\dfrac{1}{3}-\dfrac{1}{10}\)
\(\dfrac{1}{2}\)A = \(\dfrac{7}{30}\)
A = \(\dfrac{7}{30}:\dfrac{1}{2}\)
A = \(\dfrac{7}{15}\)
\(a,\dfrac{1}{7}+\dfrac{1}{3}=\dfrac{3}{21}+\dfrac{7}{21}=\dfrac{10}{21}\\ b,\dfrac{-2}{3}+\dfrac{-5}{7}=\dfrac{-14+\left(-15\right)}{21}=\dfrac{-29}{21}\\ c,\dfrac{1}{2}-\dfrac{-1}{2}-\dfrac{1}{3}=\dfrac{3+3-2}{6}=\dfrac{4}{6}=\dfrac{2}{3}\)
\(a.\dfrac{4}{28}+\dfrac{12}{36}=\dfrac{1}{7}+\dfrac{1}{3}=\dfrac{3}{21}+\dfrac{7}{21}=\dfrac{10}{21}\\ b.\dfrac{-12}{18}+\dfrac{-15}{21}=\dfrac{-2}{3}+\dfrac{-5}{7}=\dfrac{-14}{21}+\dfrac{-15}{21}=\dfrac{-29}{21}\\ c.\dfrac{14}{28}+\dfrac{16}{32}-\dfrac{17}{51}=\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{17}{51}=1-\dfrac{17}{51}=\dfrac{2}{3}\)
\(A=\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{105}\)
\(A=2\left(\dfrac{1}{30}+\dfrac{1}{42}+...+\dfrac{1}{210}\right)\)
\(A=2\left(\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{14.15}\right)\)
\(A=2\left(\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{14}-\dfrac{1}{15}\right)\)
\(A=2\left(\dfrac{1}{5}-\dfrac{1}{15}\right)=2.\dfrac{2}{15}=\dfrac{4}{15}\)
\(A=\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+...........+\dfrac{1}{105}\)
\(=2\left(\dfrac{1}{30}+\dfrac{1}{42}+......+\dfrac{1}{210}\right)\)
\(=2\left(\dfrac{1}{5.6}+\dfrac{1}{6.7}+......+\dfrac{1}{14.15}\right)\)
\(=2\left(\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+.....+\dfrac{1}{14}-\dfrac{1}{15}\right)\)
\(=2\left(\dfrac{1}{5}-\dfrac{1}{15}\right)\)
\(=2.\dfrac{2}{15}\)
\(=\dfrac{4}{15}\)