Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(32\left(\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+...+\frac{1}{197.200}\right)-x=\frac{1}{2}\)
\(\frac{32}{3}\left(\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+....+\frac{3}{197.200}\right)-x=\frac{1}{2}\)
\(\frac{32}{3}\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{197}-\frac{1}{200}\right)-x=\frac{1}{2}\)
\(\frac{32}{3}\left(\frac{1}{8}-\frac{1}{200}\right)-x=\frac{1}{2}\)
x=0.78
Bài tập 1:
S=2/15+2/35+2/63+2/99+2/143
\(\Rightarrow\)S=2/3x5 +2/5x 7 +2/7x9 +2/9x11 +2/11x13
\(\Rightarrow\)S=1/3 -1/5 +1/5 - 1/7 +1/7 -1/9 +1/9 -1/11 +1/11 -1/13
\(\Rightarrow\)S=1/3 -1/13
\(\Rightarrow\)S=13/39 -3/39
\(\Rightarrow\)S=10/39
S=3/1.4 +3/4.7+3/7.11 ..........sai đề rồi
Bài 2
A=5/11.16+5/16.21+5/21.26+...+5/61.66
\(\Rightarrow\)A=1/11+1/16+1/16-1/21+1/21-1/26+....+1/61-1/66
\(\Rightarrow\)A=1/11-1/66
\(\Rightarrow\)A=6/66-1/66
\(\Rightarrow\)A=5/66
Sửa lại đề : \(A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.14}+\frac{3}{14.17}\)
\(A=3.\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.14}+\frac{3}{14.17}\right)\)
\(A=3.\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\right)\)
\(A=\frac{3}{3}\left(1-\frac{1}{17}\right)\)
\(A=\frac{16}{17}\)
P/S : Ở chỗ 3/11.14 có lẽ bạn ghi sai đề , mình nghĩ là 3/10.14 mới đúng
Sửa lại đề : A=31.4+34.7+37.10+310.14+314.17A=31.4+34.7+37.10+310.14+314.17
A=3.(11.4+14.7+17.10+110.14+314.17)A=3.(11.4+14.7+17.10+110.14+314.17)
A=3.13(1−14+14−17+17−110+110−114+114−117)A=3.13(1−14+14−17+17−110+110−114+114−117)
A=33(1−117)A=33(1−117)
A=1617A=1617
P/S : Ở chỗ 3/11.14 có lẽ bạn ghi sai đề , mình nghĩ là 3/10.14 mới đúng
a) \(A=\dfrac{5}{1.4}+\dfrac{5}{4.7}+...+\dfrac{5}{100.103}\)
\(\Leftrightarrow A=\dfrac{5}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\right)\)
\(\Leftrightarrow\dfrac{5}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)
\(\Leftrightarrow\dfrac{5}{3}\left(1-\dfrac{1}{103}\right)\)
\(\Leftrightarrow\dfrac{5}{3}.\dfrac{102}{103}\)
\(\Leftrightarrow\) \(A=\dfrac{170}{103}\)
b) \(B=\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{2499}\)
\(B=\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{49.51}\)
\(B=\dfrac{1}{2}\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{49.51}\right)\)
\(B=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\)
\(B=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{51}\right)\)
\(B=\dfrac{1}{2}.\dfrac{16}{51}\)
\(B=\dfrac{8}{51}\)
A = \(\dfrac{5}{1.4}+\dfrac{5}{4.7}+...+\dfrac{5}{100.103}\)
A = \(\dfrac{5}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\right)\)
A = \(\dfrac{5}{3}.\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-...-\dfrac{1}{100}+\dfrac{1}{100}-\dfrac{1}{103}\right)\)
A = \(\dfrac{5}{3}.\left[\dfrac{1}{1}-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-\left(\dfrac{1}{7}-\dfrac{1}{7}\right)-...-\left(\dfrac{1}{100}-\dfrac{1}{100}\right)-\dfrac{1}{103}\right]\)
A = \(\dfrac{5}{3}.\left[\dfrac{1}{1}-0-0-...-0-\dfrac{1}{103}\right]\)
A = \(\dfrac{5}{3}.\left[\dfrac{1}{1}-\dfrac{1}{103}\right]\)
A = \(\dfrac{5}{3}.\left[\dfrac{103}{103}-\dfrac{1}{103}\right]\)
A = \(\dfrac{5}{3}.\dfrac{102}{103}\)
A = \(\dfrac{170}{103}\)
B = \(\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{2499}\)
B = \(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{49.51}\)
B = \(\dfrac{1}{2}.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{49.51}\right)\)
B = \(\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-...-\dfrac{1}{49}+\dfrac{1}{49}-\dfrac{1}{51}\right)\)
B = \(\dfrac{1}{2}.\left[\dfrac{1}{3}-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-\left(\dfrac{1}{7}-\dfrac{1}{7}\right)-...-\left(\dfrac{1}{49}-\dfrac{1}{49}\right)-\dfrac{1}{51}\right]\)
B = \(\dfrac{1}{2}.\left[\dfrac{1}{3}-0-0-...-0-\dfrac{1}{51}\right]\)
B = \(\dfrac{1}{2}.\left[\dfrac{1}{3}-\dfrac{1}{51}\right]\)
B = \(\dfrac{1}{2}.\left[\dfrac{17}{51}-\dfrac{1}{51}\right]\)
B = \(\dfrac{1}{2}.\dfrac{16}{51}\)
B = \(\dfrac{8}{51}\)
S = 1/2.5 +1/5.8 +1/8.11+1/11.14+1/14.17+1/17.20
S=1/3.(1/2-1/5+1/5-1/8+1/8-1/11+1/11-1/14+1/14-1/17+1/17-1/20)
S=1/3.(1/2-1/20)
S=1/3.(10/20-1/20)
S=1/3.9/20
S= 3/20
k nha
a: =1/2-1/3+1/3-1/4+...+1/99-1/100
=1/2-1/100=49/100
b; =5/3(1-1/4+1/4-1/7+...+1/100-1/103)
=5/3*102/103
=510/309=170/103
c: =1/2(1/3-1/5+1/5-1/7+...+1/49-1/51)
=1/2*16/51=8/51