K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2018

\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{2008.2011}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{2008}-\frac{1}{2011}\)

\(=1-\frac{1}{2011}\)

\(=\frac{2011}{2011}-\frac{1}{2011}\)

\(=\frac{2010}{2011}\)

Chúc bạn học tốt !!!! 

1 tháng 5 2018

Đặt: A= \(\frac{3}{1\times4}\)\(\frac{3}{4\times7}\)\(\frac{3}{7\times10}\)+...+ \(\frac{3}{2005\times2008}\)\(\frac{3}{2008\times2011}\).

A= \(\frac{3}{1}\)\(\frac{3}{4}\)\(\frac{3}{4}\)\(\frac{3}{7}\)\(\frac{3}{7}\)\(\frac{3}{10}\)+...+ \(\frac{3}{2005}\)\(\frac{3}{2008}\)\(\frac{3}{2008}\)\(\frac{3}{2011}\).

A= 3- \(\frac{3}{2011}\).

A= \(\frac{6033}{2011}\)\(\frac{3}{2011}\).

A= \(\frac{6030}{2011}\).

Vậy A= \(\frac{6030}{2011}\).

28 tháng 3 2017

a,1/1-1/4+1/4-1/7+...+1/2008-1/2011

=(1-1/2011)+(-1/4+1/4)+...+(-1/2008+1/2008)

=1-1/2011+0+...+0

=1-1/2011

=2010/2011

28 tháng 1 2022

\(B=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{2008}-\dfrac{1}{2011}\right)\)

\(=\dfrac{1}{3}.\dfrac{2010}{2011}=\dfrac{2010}{6033}\)

Lại có : \(1=\dfrac{6033}{6033}\Rightarrow B< 1\)

\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{2008.2011}\)

\(=\dfrac{1}{3}.\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{2008}-\dfrac{1}{2011}\right)\)

\(=\dfrac{1}{3}.\left(\dfrac{1}{1}-\dfrac{1}{2011}\right)\)

\(=\dfrac{1}{3}.\dfrac{2010}{2011}\)

\(=\dfrac{2010}{6033}=\dfrac{670}{2011}\)

Vì phân số \(\dfrac{670}{2011}\) có tử số nhỏ hơn mẫu số ⇒ \(\dfrac{670}{2011}< 1\) hay \(B< 1\)

Sửa đề : \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\)

\(=1-\frac{1}{43}=\frac{42}{43}\)

11 tháng 2 2018

Ta có :

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}\)

\(=\)\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\)

\(=\)\(1-\frac{1}{43}\)

\(=\)\(\frac{42}{43}\)

20 tháng 9 2016

\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+...+\frac{3^2}{97.100}\)

\(\Rightarrow A=3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)

\(\Rightarrow A=3\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(\Rightarrow A=3\left(1-\frac{1}{100}\right)\)

\(\Rightarrow A=3.\frac{99}{100}\)

\(\Rightarrow A=3.\frac{99}{100}\)

\(\Rightarrow A=\frac{297}{100}\)

6 tháng 3 2023

\(B=1-\dfrac{3}{1\cdot4}-\dfrac{3}{4\cdot7}-...-\dfrac{3}{2020\cdot2023}\\ =1-\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{2020\cdot2023}\right)\\ =1-\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{2020}-\dfrac{1}{2023}\right)\\ =1-\left(1-\dfrac{1}{2023}\right)\\ =1-\dfrac{2022}{2023}=\dfrac{1}{2023}\)

6 tháng 3 2023

`B=1-3/(1.4)-3/(4.7)-3/(7.10)-....-3/(2020.2023)`

`B=1-(3/(1.4)+3/(4.7)+.....+3/(2020.2023))`

`B=1-(1-1/4+1/4-1/7+.....+1/2020-1/2023)`

`B=1-(1-1/2023)`

`B=1-1+1/2023=1/2023`

13 tháng 3 2021

\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+....+\dfrac{3}{43.46}\)

\(=\dfrac{3}{1}-\dfrac{3}{4}+\dfrac{3}{4}-\dfrac{3}{7}+\dfrac{3}{7}-\dfrac{3}{10}+.....+\dfrac{3}{43}-\dfrac{3}{46}=3-\dfrac{3}{46}=\dfrac{135}{46}\)

Học tốt nha e