Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=32019+1+3+32+33+...+32018
⇒A=1+3+32+...+32018+32019
⇒3A=3×(1+3+3^2+3^3+....+3^2019)
3A=3+3^2+3^3+....+3^2020
3A-A=(3+3^2+3^3+....+3^2020) -(1+3+3^2+....+3^2019)
2A= 3^2020-1
⇒ A =( 3^2020-1):2
A=32019+1+3+32+33+...+32018
⇒A=1+3+32+...+32018+32019
⇒3A=3×(1+3+3^2+3^3+....+3^2019)
⇒3A=3+3^2+3^3+....+3^2020
⇒3A-A=(3+3^2+3^3+....+3^2020) -(1+3+3^2+....+3^2019)
⇒2A= 3^2020-1
⇒ A =( 3^2020-1):2
\(B=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{132}\)
\(B=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{11\cdot12}\)
\(B=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{12}\)
\(B=\frac{1}{4}-\frac{1}{12}\)
\(B=\frac{1}{6}\)
\(A=\left(1+3\right)+3^2\left(1+3\right)+...+3^{2018}\left(1+3\right)\)
\(=4\left(1+3^2+...+3^{2018}\right)⋮4\)
Số các số hạng là
( 100 - 2) : 2 + 1 = 50
Tổng là
( 100 + 2 ) x 50 : 2 = 2550
đáp số 2550
hok tốt
\(2\frac{x}{7}=\frac{75}{35}\)
\(\Rightarrow\frac{14+x}{7}=\frac{75}{35}\)
\(\Rightarrow x=1\)
Bài 1: Ta chỉ cần bỏ ngoặc rồi cộng hai phân số để ra kết quả là số tự nhiên là xong
Bài 2:
A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+............+\frac{1}{2003.2004}\)
A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-.............-\frac{1}{2003}+\frac{1}{2003}-\frac{1}{2004}\)
A = \(1-\frac{1}{2004}\)
A = \(\frac{2004}{2004}-\frac{1}{2004}=\frac{2003}{2004}\)
Mk làm mẫu 1 bài nha
Bài 1 :
a, = (1/4+3/4) - (5/13+8/13)+2/11
= 1 - 1 + 2/11
= 2/11
Tk mk nha
6x + 11y chia hết cho 31
=> 6x + 11y + 31y chia hết cho 31 vì 31y chia hết cho 31
=> 6x + 42y chia hết cho 31
=> 6(x + 7y) chia hết cho 31
=> x + 7y chia hết cho 31 vì 6 và 31 là hai số nguyên tố cùng nhau
=> đpcm