K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2016

1/2.3 + 1/3.4 + 1/4.5 + ... + 1/19.20

= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/19 - 1/20

= 1/2 - 1/20

= 9/20

k đii

11 tháng 5 2016

1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/19 - 1/20

1/2 - 1/20

9/20

27 tháng 4 2018

Ta có : \(\frac{1}{1.2}\)+  \(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+\(\frac{1}{4.5}\)+\(\frac{1}{5.6}\)+\(\frac{1}{6.7}\)

= 1  - \(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{6}\)+\(\frac{1}{6}\)-\(\frac{1}{7}\)

= 1 - \(\frac{1}{7}\)=  \(\frac{6}{7}\)

27 tháng 4 2018

=1-1/2+1/2-1/3+1/3-1/4+...+1/6-1/7=1-1/7=6/7

7 tháng 4 2017

3A=1.2.3+2.3.3+3.4.3+...+19.20.3

3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+19.20.(21-18)

3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+19.20.21-18.19.20

3A=19.20.21

=> \(A=\frac{19.20.21}{3}=2660\)

23 tháng 4 2017

mk dùng cách của lớp 8 nha bạn ;

ta có công thức xích ma như sau x(x+1)

nhập vào xích ma ta có kết quả 2660

22 tháng 10 2016

a) Ta có công thức tính tổng các số tự nhiên liên tiếp sau:

Ôn tập toán 6

\(\Rightarrow1275=\frac{\left(1+n\right)n}{2}\Rightarrow\left(1+n\right)n=1275.2=2550=50.51\)

Mà n là số tự nhiên => n và n+1 là 2 số tự nhiên liên tiếp => n=50.

b) Đề chưa đầy đủ.

c) Ta có:

\(A=1.2+2.3+3.4+.....+19.20\)

\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+19.20.\left(21-18\right)\)

\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.....+19.20.21-18.19.20\)

\(=\left(1.2.3+2.3.4+3.4.5+......+19.20.21\right)-\left(1.2.3+2.3.4+......+18.19.20\right)=19.20.21\)

\(\Rightarrow A=19.20.7=2660=133.2.10\Rightarrow\frac{A}{133.2}=\frac{2.133.10}{2.133}=10\)

 

 

22 tháng 10 2016

cảm ơn bạn, mà đề chỉ là nếu có thôi chứ câu b đủ rồi á bạn

26 tháng 4 2023

\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{19\cdot20}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)

\(=1-\dfrac{1}{20}=\dfrac{19}{20}\)

26 tháng 4 2023

\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+....+\dfrac{1}{19\cdot20}\)

\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{20}\)

\(A=1-\dfrac{1}{20}\)

\(A=\dfrac{19}{20}\)

 

đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}\left(\frac{1}{18.19}-\frac{1}{19.20}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{380}\right)=\frac{189}{760}\)

Đặt \(B=\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{19.20}=\frac{3}{1}-\frac{3}{2}+\frac{3}{2}-\frac{3}{3}+...+\frac{3}{19}-\frac{3}{20}\)

\(=3-\frac{3}{20}=\frac{57}{20}\)

\(D=A-B=\frac{189}{760}-\frac{57}{20}=-\frac{1977}{760}\)

5 tháng 7 2017

Gọi \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)là A

\(\frac{3}{1.2}-\frac{3}{2.3}-...-\frac{3}{19.20}\)là B

\(A=\left[\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{18.19}-\frac{1}{19.20}\right)\right]\)

\(A=\left[\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\right]\)

\(A=\left[\frac{1}{2}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\right)\right]\)

\(A=\left[\frac{1}{2}.\left(1-\frac{1}{20}\right)\right]\)

\(A=\frac{1}{2}.\frac{19}{20}\)

\(A=\frac{19}{40}\)

\(B=\frac{3}{1.2}-\frac{3}{2.3}-...-\frac{3}{19.20}\)

\(B=\left(\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{19.20}\right)\)

\(B=\left[3.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\right)\right]\)

\(B=\left[3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{2}{3}+...+\frac{1}{19}-\frac{1}{20}\right)\right]\)

\(B=\left[3.\left(\frac{19}{20}\right)\right]\)

\(B=\frac{57}{20}\)

Vậy A - B = \(\frac{19}{40}-\frac{57}{20}\)

\(=-\frac{95}{40}=-\frac{19}{8}\)

Nếu đúng thì k nha

6 tháng 5 2018

Trả lời

a) \(\frac{-2}{2\cdot3}+\frac{-2}{3\cdot4}+\frac{-2}{4\cdot5}+...+\frac{-2}{19\cdot20}\)

\(=-2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{19\cdot20}\right)\)

\(=-2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\right)\)

\(=-2\left(\frac{1}{2}-\frac{1}{20}\right)\)

\(=-2\cdot\frac{9}{20}\)

\(=\frac{-18}{20}=\frac{-9}{10}\)

25 tháng 4 2020

A= 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6

A= 1/2 - 1/3+ 1/3-1/4 + 1/4-1/5+ 1/5-1/6

A= 1/2- 1/6

A= 1/3

25 tháng 4 2020

\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)

\(\Rightarrow A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(\Rightarrow A=\frac{1}{2}-\frac{1}{6}\)

\(\Rightarrow A=\frac{1}{3}\)