K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2016

nhân tổng trên cho 2 ta có;

2/1.2.3+2/2.3.4+.........+2/98.99.100

=1/1.2-1/2.3+1/2.3-1/3.4+........+1/98.99-1/99.100

=1/1.2-1/99.100

=4949/9900

/

9 tháng 7 2017

Ta có : A = 1.2.3 + 2.3.4 + 4.5.6 + ..... + 98.99.100

=> 6A = 1.2.3.4 - 1.2.3.4 + 2.3.4.5 - 2.3.4.5 + ...... + 98.99.100.101

=> 6A = 98.99.100.101 

=> A = \(\frac{98.99.100.101}{6}=16331700\)

9 tháng 7 2017

có 20172 đồng dư 1 mod (3)
   => (20172)50 đồng dư 1 mod (3)
=> (20172)50-1 đồng dư 1-1 = 0 mod (3)
=> dpcm

23 tháng 3 2016

bạn tách ra thành các phân số ấy

23 tháng 3 2016

đặt N=1/1.2.3+1/2.3.4+....+1/98.99.100

=1/2.(2/1.2.3+2/2.3.4+...+2/98.99.100)

=1/2(1/1.2-1/2.3+1/3.4+...+1/98.99-1/99.100)

=1/2(1/2-1/99.100)

=1/2.4949/9900

=4949/19800

20 tháng 4 2022

=1/1.2.3+1/2.3.4+1/3.4.5+............+1/98.99.100

 =12(11.2−12.3+12.3−13.4+...+198.99−199.100)

=12(12−19900)

=12⋅49499900

20 tháng 4 2022

cho mình xin lỗi vì đáp án mình gửi lên nó bị lỗi nhá

15 tháng 7 2016

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}\left(\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(=\frac{1}{2}.\frac{4949}{9900}\)

\(=\frac{4949}{19800}\)

15 tháng 7 2016

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}\left(\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\frac{4949}{9900}=\frac{4949}{19800}\)

17 tháng 9 2016

B=1/1.2.3+1/2.3.4+1/3.4.5+............+1/98.99.100

 \(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(=\frac{1}{2}\cdot\frac{4949}{9900}\)

\(=\frac{4949}{19800}\)

17 tháng 9 2016

\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

\(B=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)

\(B=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(B=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(B=\frac{1}{2}.\frac{4949}{9900}=\frac{4949}{19800}\)

28 tháng 2 2015

Ta xét:

\(\frac{1}{1.2}-\frac{1}{2.3}=\frac{2}{1.2.3};\frac{1}{2.3}-\frac{1}{3.4}=\frac{2}{2.3.4};...;\frac{1}{98.99}-\frac{1}{99.100}=\frac{2}{98.99.100}\)

Qua công thức trên, bạn có thể rút ra tổng quát: (đây là mình nói thêm)

\(\frac{1}{n.\left(n+1\right)}-\frac{1}{\left(n+1\right).\left(n-2\right)}=\frac{2}{n.\left(n+1\right).\left(n+2\right)}\)

Ta suy ra:

\(2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)

       \(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

      Thấy \(-\frac{1}{2.3}+\frac{1}{2.3}=0;-\frac{1}{3.4}+\frac{1}{3.4}=0;...\)

\(\Rightarrow2B=\frac{1}{2}-\frac{1}{99.100}=\frac{1}{2}-\frac{1}{9900}=\frac{4950}{9900}-\frac{1}{9900}=\frac{4949}{9900}\)

\(\Rightarrow B=\frac{4949}{9900}:2=\frac{4949}{19800}\)

1 tháng 3 2015

Mình nhầm, công thức tổng quát mình nói thêm bạn đổi cái n-2 thành n+2 nha

13 tháng 2 2020

\(S=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{98\cdot99\cdot100}\)

\(S=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\right)\)

\(S=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\)

\(S=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(S=\frac{1}{2}\cdot\frac{4949}{9900}=\frac{4949}{19800}\)

13 tháng 2 2020

\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

\(\Rightarrow2S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(=\frac{1}{1.2}-\frac{1}{99.100}=\frac{4849}{9900}\)

\(\Rightarrow S=\frac{4949}{9900}\div2=\frac{4949}{19800}\)

12 tháng 3 2017

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\frac{4949}{9900}\)

\(=\frac{4949}{19800}\)