K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2017

Ta có: \(A=\frac{2008+\frac{2007}{2}+\frac{2006}{3}+....+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\)

Xét tử : \(2008+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)

\(=\left(1+1+...+1\right)+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)( có 2008 số hạng 1 )

\(=\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+...+\left(1+\frac{2}{2007}\right)+\left(1+\frac{1}{2008}\right)+1\)

\(=\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}+\frac{2009}{2009}\)

\(=2009\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)

Ghép tử và mẫu....

Vậy A = 2009

19 tháng 7 2015

 bạn xem tại đây nhé ^^

19 tháng 7 2015

dang phuong thao la loai copy cua olm ma

24 tháng 6 2015

tử là M mẫu là N ta dc

\(M=2008+\frac{2007}{2}+...+\frac{1}{2008}\)

       \(=\left(1+...+1\right)+\frac{2007}{2}+...+\frac{1}{2008}\)

       \(=\frac{2009}{2}+...+\frac{2009}{2008}+\frac{2009}{2009}\)

       \(=2009\left(\frac{1}{2}+...+\frac{1}{2008}+\frac{1}{2009}\right)\)

vậy ta có 

\(A=\frac{M}{N}=\frac{2009\left(\frac{1}{2}+...+\frac{1}{2008}+\frac{1}{2009}\right)}{\frac{1}{2}+...+\frac{1}{2008}+\frac{1}{2009}}\)\(=2009\)

 

27 tháng 3 2017

ngu thì đừng bày đặt

7 tháng 9 2017

A=\(\frac{2007^{2007}}{2008^{2008}}\)

B=\(\frac{2008^{2008}}{2009^{2009}}\)

7 tháng 9 2017

A be honB

22 tháng 3 2018

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2007}-\frac{1}{2008}\)

\(A=\left(1+\frac{1}{3}+...+\frac{1}{2007}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2008}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2008}\right)\)

\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{1004}\)

\(A=\frac{1}{1005}+\frac{1}{1006}+\frac{1}{1007}+...+\frac{1}{2008}\)    (1)

\(B=\frac{1}{1005}+\frac{1}{1006}+\frac{1}{1007}+...+\frac{1}{2008}\)     (2)

\(\left(1\right)\left(2\right)\Rightarrow\frac{A}{B}=\frac{\frac{1}{1005}+\frac{1}{1006}+\frac{1}{1007}+...+\frac{1}{2008}}{\frac{1}{1005}+\frac{1}{1006}+\frac{1}{1007}+...+\frac{1}{2008}}=1\)