Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Nối chia khối tứ diện ABCD thành hai khối đa diện gồm PQD.NMB và khối đa diện chứa đỉnh A có thể tích A.
Dễ thấy P,Q lần lượt là trọng tâm của ∆BCE, ∆ABE
Gọi S là diện tích
Họi h là chiều cao của tứ diện ABCD
Khi đó
Suy ra
Ta có
V D M N P V D A B C = D M D A . D N D B . D P D C = 1 2 . 1 2 . 3 4 = 1 8
Do đó 1 8 . 3 12 = 3 96
Đáp án C
Đáp án B
Gọi M là trung điểm của BC khi đó D M ⊥ B C A M ⊥ B C
Suy ra B C ⊥ ( D M A ) ⇒ D B C ; A B C ^ = 60 °
Lại có D M = A M = a 3 2
Dựng D H ⊥ A M ⇒ D H ⊥ ( A B C )
Khi đó V A B C D = 1 3 D H . S A B C = 1 3 D M . sin 60 ° . a 2 3 4 = a 2 3 16 .
Đáp án C
Gọi H là trọng tâm Δ B C D thì A H ⊥ B C D .
Ta có: B H = 2 3 . 3 3 2 = 3
⇒ A H = A B 2 − B H 2 = 9 − 3 = 6
Do đó: V A B C D = 1 3 . A H . S B C D = 1 3 . 6 . 3 2 3 4 = 9 2 4 .
Lại có:
V C . M N P V C . A B D = 1 3 d C , A B D . S M N P 1 3 d C , A B D . S A B D = S M N P S A B D = S A B D − S S P M − S D M N − S B P N S A B D = 1 − 1 2 . 2017 4035 − 1 4 − 1 2 . 2018 4035 = 1 4
Vậy V C . M N P = 1 4 . 9 2 4 = 9 2 16 .
Đáp án A
Ta có A B → = 2 ; 1 ; 2 A C → = - 2 ; 2 ; 1 ⇒ A B → ; A C → = - 3 ; - 6 ; 6 ⇒ S ∆ A B C = 1 2 A B → , A C → = 9 2
Phương trình mặt phẳng (ABC) là - 3 x - 0 - 6 y - 1 + 6 z - 0 = 0 ⇔ x + 2 y - 2 z - 2 = 0
Điểm M ∈ d ⇒ M 2 t + 1 ; - t - 2 ; 2 t + 3 ⇒ d M , A B C = 4 t + 11 3 1
Lại có V M . A B C = 1 3 d M , A B C . S ∆ A B C ⇒ d M , A B C = 2 2
Từ (1) và (2) suy ra 4 t + 11 3 = 2 ⇔ 4 t + 11 = 6 ⇔ [ t = - 5 4 t = - 17 4 . Vậy [ M 1 - 15 2 ; 9 4 ; - 11 2 M 2 - 3 2 ; - 3 4 ; 1 2 .
Đáp án A