K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2021

Chọn 2 trong n  đỉnh của đa giác ta lập được 1 cạnh hoặc đường chéo.(n>=3,n thuộc N*)

Số cạnh và đường chéo là C2n (đường).

⇒ Số đường chéo của đa giác n cạnh là C2n−n (đường).

Theo đề bài, số đường chéo gấp đôi số cạnh nên ta có phương trình:

C2n−n=2n⇔n!/2!(n−2)!=3n

⇔n(n−1)(n−2)!/2(n−2)!=3n

⇔n(n−1)=6n

⇔n^2−7n=0

⇔[n=7(tm)        n=0(ktm)

Vậy đa giác cần tìm có 7 cạnh.

13 tháng 12 2017

a) \(\frac{\left(24-3\right).24}{2}=252\)đường chéo

b) \(\left(n-3\right).n=340\)

\(n^2-3n=340\)

\(n^2-3n-340=0\)

\(n^2-20n+17n-340=0\)

\(n\left(n-20\right)+17\left(n-20\right)\)

\(\left(n+17\right)\left(n-20\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}n+17=0\\n-20=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}n=-17\\n=20\end{cases}}\)

n = -17 ( loại )

n = 20 ( nhận )

Vậy n = 20 hay số cạnh của đa giác là 20 

13 tháng 12 2017

1 Đa giác có n cạnh có : 

- Số đường chéo từ 1 đỉnh là : (n - 3) 
- Số đỉnh là n 

Do 1 đường chéo nối 2 đỉnh 
=> 1 Đa giác có n cạnh có n(n - 3)/2 đường chéo 

biết tổng số đường chéo là 170 

=> n(n - 3)/2 = 170 

=> n² - 3n - 340 = 0 

∆ = (-3)² - 4.(-340) = 1369 

=> √∆ = 37 

=> n = ... (tự giải)

12 tháng 12 2021

Số đường chéo của một đa giác \(n\) cạnh \(\left(n>3\right)\)được tính bởi công thức \(\frac{n\left(n-3\right)}{2}\)

a) Số đường chéo bằng số cạnh có nghĩa là \(\frac{n\left(n-3\right)}{2}=n\Leftrightarrow n^2-3n=2n\Leftrightarrow n^2-5n=0\Leftrightarrow n\left(n-5\right)=0\Leftrightarrow\orbr{\begin{cases}n=0\left(loại\right)\\n=5\left(nhận\right)\end{cases}}\)

Vậy hình ngũ giác có số đường chéo bằng số cạnh.

Số đường chéo gấp đôi số cạnh có nghĩa là \(\frac{n\left(n-3\right)}{2}=2n\Leftrightarrow n^2-3n=4n\Leftrightarrow n^2-7n=0\Leftrightarrow n\left(n-7\right)=0\Leftrightarrow\orbr{\begin{cases}n=0\left(loại\right)\\n=7\left(nhận\right)\end{cases}}\)

Vậy hình thất giác có số đường chéo gấp đôi số cạnh.

12 tháng 12 2021

Các bạn ơi giúp mik với

28 tháng 7 2016

Xét đa giác có n cạnh hay n góc
1

a) Một góc trong tạo với 1 góc ngoài kề với nó tạo ra 1 góc bẹt => Có n góc bẹt, tổng chúng là 1800n
Ta có tổng các góc trong đa giác có n góc là (n−2)1800
=> tổng các góc ngoài là 1800n - (n−2)1800 = 3600

b.Ta có số đường chéo của đa giác n cạnh là \(\frac{n\left(n-3\right)}{2}\)
Ta có: 

 

28 tháng 7 2016

Một góc trong tạo với 1 góc ngoài kề với nó tạo ra 1 góc bẹt => Có n góc bẹt, tổng chúng là 1800n
Ta có tổng các góc trong đa giác có n góc là (n - 2) 180 

=> tổng các góc ngoài là 180on - (n - 2) 180 = 3600

Ta có số đường chéo của đa giác n cạnh là:\(\frac{n\left(n-3\right)}{2}\)

Ta có : \(3n=\frac{n\left(n-3\right)}{2}\Leftrightarrow6n=n\left(n-3\right)\Leftrightarrow6=n-3\Rightarrow n=9\)

23 tháng 12 2021

Chọn B

23 tháng 12 2021

Sai r D mới đúng

16 tháng 1 2021

Ta có cách tính cạnh của một đa giác là :

\(\dfrac{\left(a-3\right).a}{2}\),trong đó a là số đỉnh \(\Rightarrow\) đa giác có a cạnh

\(\Rightarrow\dfrac{\left(a-3\right).a}{2}-a=7\Leftrightarrow\dfrac{a^2-3a-2a}{2}=7\\ \Rightarrow a^2-5a=14\)

\(\Rightarrow a\left(a-5\right)=14.\)

Vì a là số cạnh nên a>1 và a>a-5

\(\Rightarrow a\left(a-5\right)=2.7\Rightarrow\)\(\left\{{}\begin{matrix}a=7\\\\a-5=2\end{matrix}\right.\)\(\Rightarrow a=7\)

Vậy đa giác có 7 cạnh

3 tháng 9 2021

Số đường chéo của đa giác đều n cạnh là \(\dfrac{n\left(n-3\right)}{2}\)
Số đường chéo bằng 33 số cạnh

\(\Rightarrow\dfrac{n\left(n-3\right)}{2}=33n\Rightarrow n\left(n-3\right)=66n\\ \Rightarrow n-3=66\\ \Rightarrow n=69\)
Suy ra đa giác đều đó có 69 cạnh
Số đo mỗi góc là \(\dfrac{180\cdot33+360}{69}\approx91,3\)

 

15 tháng 11 2019

Số đường chéo của đa giác n cạnh là (n( n - 3 ))/2. ( n ∈ N, n ≥ 3 )

Theo giả thiết ta có (n( n - 3 ))/2 = n ⇔ n( n - 3 ) = 2n  ⇔ n 2 - 3 n - 2 n = 0

⇔ n 2 - 5 n = 0 ⇔ n ( n - 5 ) = 0  ⇔ Bài tập: Đa giác. Đa giác đều | Lý thuyết và Bài tập Toán 8 có đáp án

So sánh điều kiện ta có n = 5 thỏa mãn.

Chọn A

27 tháng 12 2017