K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2017

Bài này hơi khó hiểu xíu. Thông cảm nha babe:v

\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+.......+\frac{1}{20}\left(1+2+3+....+20\right)\)

\(B=1+\left(\frac{1}{2}+1\right)+2+\left(\frac{1}{2}+2\right)+3+\left(\frac{1}{2}+3\right)+.....+10+\left(\frac{1}{2}+10\right)\)(chỗ này là nhân phân phối vô đấy!)

\(B=\left(1+2+3+....+10\right)+\left(1+2+3+...+10\right)+\left(\frac{1}{2}.10\right)\)

\(B=55+55+5=115\)

2 tháng 8 2015

\(1+\frac{1}{2}.\left(1+2\right)+\)\(\frac{1}{3}.\left(1+2+3\right)+\frac{1}{4}.\left(1+2+3+4\right)+...+\frac{1}{16}.\left(1+2+3+...+16\right)\)

=\(\frac{2}{2}+\frac{3}{2}+\frac{6}{3}+...+\frac{136}{16}\)

=\(\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{17}{2}\)

=\(\frac{2+3+4+5+6+...+17}{2}\)=\(\frac{152}{2}=76\)

9 tháng 11 2018

Ta có:

\(1+\frac{1}{2}\left(1+2\right)+..........+\frac{1}{20}\left(1+2+3+.......+20\right)\)

\(=1+\frac{1}{2}\left(\frac{3.2}{2}\right)+\frac{1}{3}\left(\frac{4.3}{2}\right)+........+\frac{1}{20}\left(\frac{21.20}{2}\right)\)

\(=1+\frac{3}{2}+\frac{4}{2}+..........+\frac{21}{2}=\frac{2+3+4+........+21}{2}\)

\(=\frac{\frac{23.20}{2}}{2}=\frac{23.10}{2}=115\)

6 tháng 4 2016

\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+...+\frac{1}{20}.\frac{20.21}{2}=1+\frac{3}{2}+\frac{4}{2}+...+\frac{21}{2}=1+\frac{24.19}{2}=229\)

22 tháng 11 2015

\(S=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)....\left(1-\frac{1}{20^2}\right)\)

\(S=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{399}{20^2}\)

\(S=\frac{1.3.2.4.3.5......19.21}{2.2.3.3.4.4.....20.20}\)

\(S=\frac{\left(1.2.3.....19\right).\left(3.4.5.....21\right)}{\left(2.3.4....20\right)\left(2.3.4....20\right)}\)

\(S=\frac{21}{20.2}\)

\(S=\frac{21}{40}\)

2 tháng 4 2023

1+1=3 :)))