Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 x 2 + 2 x 3 + 3 x 4 + 4 x 5 + ... + 39 x 40
3S = 1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 + 4 x 5 x 3 + ... + 39 x 40 x 3
3S = 1x2x3 + 2x3x(4-1 ) + 3x4x(5-2 ) + 4x5x(6-3 ) + ... + 39x40x(41-38 )
3S = 1 x 2x3 + 2x3x4-1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 39x40x31 - 38x39x40
3S = 39x40x41
S = 39x40x41 : 3
S = 21320
S=1*2+ 2*3 + 3*4 +.....+ 39*40
S= 2 + 6+ 12 + ....+ 1560
S= 2 + 0 + 4 + 2 +6 + 4 + 2+ ....... + 1554 + 4 +2
S= 2 + 0 + 6 +6 + 6 + ....... +1554 + 6
S= 2 + ( 0 + 6 + ..... +1554)+ ( 6 * ((1554-0):6+1))
S = 2 + 202020 + 1560
S = 203582
A=1/2x2/3x3/4x...x2018/2019x2019/2020=1/2020
A = 1/2 x 2/3 x 3/4 x ... x 2018/2019 x 2019/2020 = 1/2020
\(\frac{70}{3}\left(\frac{39}{30}+\frac{39}{42}\right)-\frac{246}{7}\div\left(\frac{41}{56}+\frac{41}{72}\right)\)
\(=\frac{70}{3}\left(\frac{13}{10}+\frac{13}{14}\right)-\frac{246}{7}\div\left(\frac{41}{7\cdot8}+\frac{41}{8\cdot9}\right)\)
\(=\frac{70}{3}\left(1+\frac{3}{10}+1-\frac{1}{14}\right)-\frac{246}{7}\div\left(\frac{40+1}{7\cdot8}+\frac{40+1}{8\cdot9}\right)\)
\(=\frac{70}{3}\left[\left(1+1\right)+\left(\frac{3}{10}-\frac{1}{14}\right)\right]-\frac{246}{7}\div\left(\frac{5}{7}+\frac{1}{7\cdot8}+\frac{5}{9}+\frac{1}{8\cdot9}\right)\)
\(=\frac{70}{3}\left(2+\frac{8}{35}\right)-\frac{246}{7}\div\left[\frac{5}{7}+\frac{5}{9}+\left(\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\right)\right]\)
\(=\frac{70}{3}\cdot\frac{78}{35}-\frac{246}{7}\div\left[\frac{5}{7}+\frac{5}{9}+\left(\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\right]\)
\(=\frac{35\cdot2\cdot26\cdot3}{3\cdot35}-\frac{246}{7}\div\left(\frac{5}{7}+\frac{5}{9}+\frac{1}{7}-\frac{1}{9}\right)\)
\(=52-\frac{246}{7}\div\left[\left(\frac{5}{7}+\frac{1}{7}\right)+\left(\frac{5}{9}-\frac{1}{9}\right)\right]\)
\(=52-\frac{246}{7}\div\left(\frac{6}{7}+\frac{4}{9}\right)\)
\(=52-\frac{246}{7}\div\frac{82}{63}\)
\(=52-\frac{82\cdot3\cdot9\cdot7}{7\cdot82}\)
\(=52-27=25\)
\(\frac{57}{20}-\frac{26}{15}+\frac{139}{20}\div3\)
\(=\frac{57}{20}-\frac{26}{15}+\frac{139}{60}\)
\(=\frac{171}{60}-\frac{104}{60}+\frac{139}{60}=\frac{103}{30}\)
\(\frac{39}{4}+\frac{2}{3}\left(11-\frac{23}{4}\right)\)
\(=\frac{39}{4}+11\cdot\frac{2}{3}-\frac{23}{4}\cdot\frac{2}{3}\)
\(=\frac{39}{4}+\frac{22}{3}-\frac{56}{12}\)
\(=\frac{119}{12}+\frac{88}{12}-\frac{56}{12}=\frac{151}{12}\)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2002}\right)\left(1-\frac{1}{2003}\right)\left(1-\frac{1}{2004}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2001}{2002}\cdot\frac{2002}{2003}\cdot\frac{2003}{2004}\)
\(=\frac{1\cdot2\cdot3\cdot...\cdot2001\cdot2002\cdot2003}{2\cdot3\cdot4\cdot...\cdot2002\cdot2003\cdot2004}=\frac{1}{2004}\)
Bài 1:
\(A=\frac{1}{\left(1+2\right)}+\frac{1}{\left(1+2+3\right)}+\frac{1}{\left(1+2+3+4\right)}\)\(+\frac{1}{\left(1+2+3+4+5\right)}+...+\)\(\frac{1}{\left(1+2+3+...+10\right)}\)
\(A=\frac{1}{3}+\frac{1}{6}+....+\frac{1}{55}\)
\(A=2\left(\frac{1}{6}+\frac{1}{12}+....+\frac{1}{110}\right)\)
\(A=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{10}-\frac{1}{11}\right)\)
\(A=2.\left(\frac{1}{2}-\frac{1}{11}\right)\)
\(A=\frac{9}{11}\)
Bài 2 :
2) Tử số = 11 x 13 x 15 + 3 x 3 x 3 x 11 x 13 x 15 + 5 x 5 x 5 x 11 x 13 x 15 + 9 x 9 x 9 x 11 x 13 x 15
= (1 + 3 x 3 x 3 + 5 x 5 x 5 + 9 x 9 x9) x 11 x 13 x 15 = (1+27+125+ 729) x 11 x 13 x 15
Mẫu số = 11 x 13 x 17 + 3 x 3 x 3 x 13 x 15 x 19 + 5 x 5 x 5 x 13 x 15 x 17 + 9 x 9 x 9 x 13 x 15 x 17 lớn hơn 11 x 13 x 15 + 3 x 3 x 3 x 13 x 15 x 17 + 5 x 5 x 5 x 13 x 15 x 17 + 9 x 9 x 9 x 13 x 15 x 17
= (1 + 3 x 3 x 3 + 5 x 5 x 5 + 9 x 9 x9) 13 x 15 x 17 = (1+27+125+729) x 13 x 15 x 17
\(\Rightarrow A< \frac{\left(1+27+125+729\right)\times11\times13\times15}{\left(1+27+125+729\right)\times13\times15\times17}\)
\(=\frac{11}{17}\)
\(=\frac{1111}{1717}=B\)
Vậy \(A=B\)
kết quả là 39/40
S 1x2+2x3+3x4+...+38x39+39x40
3S = 1x2x3 + 2x3x3 + 3x4x3 + ... + 38x39x3 + 39x40x3
3S = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + ... + 38x39x(40-37) + 39x40x(41-38)
3S = 1x2x3 + 2x3x4-1x2x3 + 3x4x5-2x3x4 + ... + 38x39x40-37x38x39 + 39x40x41-38x39x40
S = 39x40x41 : 3
S = 21320