Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
27/28 = 3x9 / (4x7) = 3/4 x 9/7
27/28 x 35/36 = (3x9) / (4x7) x (5x7) / (4x9) = 3/4 x 5/4
27/28 x 35/36 x 44/45 = 3x5/(4x4) x 4x11/5x9 = 3/4 x 11/9
......
xxxxxx .... x (49x101)/(50x99) = 3/4 x 101/99
( x + 1 ) + ( x + 4 ) + ( x + 7 ) + ......... + ( x + 28 ) = 155
<=>(x+x+x...+x)+(1+4+...+28)=155
=>10x+145=155
=>10x=155-145
=>10x=10
=>x=1
1) a) \(\frac{5454}{5757}-\frac{171717}{191919}=\frac{18\times3\times101}{19\times3\times101}-\frac{17\times10101}{19\times10101}=\frac{18}{19}-\frac{17}{19}=\frac{1}{19}\)
b) \(\frac{6}{5}\times\frac{7}{6}\times\frac{8}{7}\times....\times\frac{2021}{2020}=\frac{6\times7\times8\times...\times2021}{5\times6\times7\times...\times2020}=\frac{2021}{5}\)
2) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}=2\times\frac{1}{6}+2\times\frac{1}{12}+2\times\frac{1}{20}+...+2\times\frac{1}{90}\)
\(=2\times\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{9\times10}\right)\)
\(=2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)=2\times\left(\frac{1}{2}-\frac{1}{10}\right)=2\times\frac{2}{5}=\frac{4}{5}\)
b)Vì \(a-1< a+1\)
=> \(\frac{1}{a-1}>\frac{1}{a+1}\)
+) Nghĩ đến việc thêm tổng 1+2 + ..+9 để tổng trở thành tổng 1+2+ 3+ ..+ x
Tổng sau xác định được số các số hạng trong dãy đơn giản hơn so với tổng đầu
+) bài 10 + 11 + ...+ x = 5106 hoàn toàn làm tương tự: cộng thêm tổng 1 + 2 + ...+ 9 vào cả 2 vế
27/28 = 3x9 / (4x7) = 3/4 x 9/7 27/28 x 35/36 = (3x9) / (4x7) x (5x7) / (4x9) = 3/4 x 5/4 27/28 x 35/36 x 44/45 = 3x5/(4x4) x 4x11/5x9 = 3/4 x 11/9 ...... xxxxxx .... x (49x101)/(50x99) = 3/4 x 101/99