Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này không khó. Nhưng đánh máy để giải cho bạn thì thực sự khó
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(=\frac{2^{19}.\left(3^3\right)^3+15.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(2^2.3\right)^{10}}\)
\(=\frac{2^{19}.3^9+15.2^{18}.3^8}{2^9.3^9.2^{10}+2^{20}.3^{10}}\)
\(=\frac{2^{19}.3^9+15.2^{18}.3^8}{2^{19}.3^9+2^{20}.3^{10}}\)
\(=\frac{2^{18}.3^8\left(2.3+15\right)}{2^{19}.3^9\left(1+2.3\right)}\)
\(=\frac{6+15}{2.3\left(1+6\right)}\)
\(=\frac{21}{6.7}\)
\(=\frac{21}{42}\)
\(=\frac{1}{2}\)
\(=\frac{2^{19}3^9+3\cdot5\cdot2^{18}\cdot3^8}{2^9\cdot3^9\cdot2^{10}+4^{10}\cdot3^{10}}=\frac{2^{19}\cdot3^9+5\cdot2^{18}\cdot3^9}{2^{19}\cdot3^9+2^{20}\cdot3^{10}}=\frac{2^{18}\cdot3^9\cdot\left(2+5\right)}{2^{19}\cdot3^9\left(1+6\right)}=\frac{1}{2}\)
\(A=\frac{2^{19}.\left(2^3\right)^3+15.\left(2^2\right)^9.\left(3^2\right)^4}{2^9.3^9.2^{10}+\left(2^2.3\right)^{10}}=\frac{2^{19}.3^9+15.2^{18}.3^8}{2^{19}.3^9+2^{20}.3^{10}}=\frac{2^{18}.3^8.\left(2.3+15\right)}{2^{19}.3^9.\left(1+2.3\right)}\)
\(=\frac{2^{18}.3^8.21}{2^{19}.3^9.7}=\frac{21}{2.3.7}=\frac{1}{2}\)
\(=\dfrac{2^{19}\cdot3^9+3\cdot5\cdot2^{18}\cdot3^8}{2^9\cdot2^{10}\cdot3^9+2^{20}\cdot3^{10}}\)
\(=\dfrac{2^{19}\cdot3^9+3^9\cdot2^{18}\cdot5}{2^{19}\cdot3^9+2^{20}\cdot3^{10}}\)
\(=\dfrac{2^{18}\cdot3^9\left(2+5\right)}{2^{19}\cdot3^9\cdot\left(1+2\cdot3\right)}=\dfrac{1}{2}\)
\(A=\dfrac{2^{19}.27^3-15.\left(-4\right)^9.9^4}{6^9.2^{10}+\left(-12\right)^{10}}\)
\(A=\dfrac{2^{19}.3^9+3.5.2^{18}.3^{12}}{2^9.3^9.2^{10}+3^{10}.2^{20}}\)
\(A=\dfrac{2^{18}.3^9\left(2+3.5.3^3\right)}{2^{19}.3^9\left(1+3.2\right)}=\dfrac{2+5.3^4}{2.7}=\dfrac{407}{14}\)
Chúc bạn học tốt!!!
Có P =\(\dfrac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}=\dfrac{2^{19}.\left(3^3\right)^3+5.3.\left(3^2\right)^4}{\left(2.3\right)^9+\left(3.2^2\right)^{10}}\)=\(\dfrac{2^{19}.3^9+5.3.2^{18}.3^8}{3^9.2^9.2^{10}+3^{10}.\left(2^2\right)^{10}}=\dfrac{2^{19}.3^9+5.2^{18}.3^9}{3^9.2^{19}+3^{10}.2^{20}}=\dfrac{2^{18}.3^9.\left(2+5\right)}{3^9.2^{19}.\left(1+3.2\right)}=\dfrac{2^{18}.3^9.7}{3^9.2^{19}.7}\)
=\(\dfrac{1}{2}\)