Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có B= 1/2018+2/2017+3/2016+...+2017/2+2018/1
=> B=1+1+1+..+1( 2018 số hạng 1)+ 1/2018+..+2017/2
=> B= (1+1/2018)+(1+2/2017)+(1+3/2016)+...+(1+2017/2)+ 2019/2019
=> B= 2019 *(1/2+1/3+...+1/2019)
=> A/B= (1/2+1/3+...+1/2019)/2019*(1/2+1/3+..+1/2019)
=> A/B= 1/2019
Ta có:
\(\Rightarrow A=B.\)
\(\Rightarrow A^{2017}=B^{2017}\)
\(\Rightarrow\left(A^{2017}-B^{2017}\right)^{2018}=\left(B^{2017}-B^{2017}\right)^{2018}=0^{2018}=0.\)
Vậy \(\left(A^{2017}-B^{2017}\right)^{2018}=0.\)
Chúc bạn học tốt!
\(\frac{x-1}{2019}+\frac{x-2}{2018}=\frac{x-3}{2017}+\frac{x-4}{2016}\)
\(\Leftrightarrow\left(\frac{x-1}{2019}-1\right)+\left(\frac{x-2}{2018}-1\right)=\left(\frac{x-3}{2017}-1\right)+\left(\frac{x-4}{2016}-1\right)\)
\(\Leftrightarrow\frac{x-2020}{2019}+\frac{x-2020}{2018}=\frac{x-2020}{2017}+\frac{x-2020}{2016}\)
\(\Leftrightarrow\frac{x-2020}{2019}+\frac{x-2020}{2018}-\frac{x-2020}{2017}-\frac{x-2020}{2016}=0\)
\(\Leftrightarrow\left(x-2020\right).\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\right)=0\)
\(\Leftrightarrow x-2020=0\)
\(\Leftrightarrow x=0+2020\)
\(\Rightarrow x=2020\)
Vậy \(x=2020.\)
Chúc bạn học tốt!
<=>[ (x-1)/2019] -1 +[(x-2)/2018]-1 = [(x-3)/2017]-1 +[(x-4)/2016] -1
<=> (x-2020)/2019 +(x-2020)/2018 = (x-2020)/2017 + (x-2020)/2016
<=> (x-2020)( 1/2019+1/2018-1/2017-1/2016)= 0
=> x-2020= 0 => x= 2020