Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
a = 5002.5002=5002.(5000+2)=5002.5000+5002.2
b = 5000.5004=5000.(5002+2)=5002.5000+5000.2
Ta thấy :5002.5000+5002.2>5002.5000+5000.2
Vậy a > b
a > b
Vì 5002;5002;5000;5004có điểm chung là 5=5;0=0;0=0
Suy ra:cả a và b đều có kết quả bằng nhau trừ số cuối
Thì 5002*5002và5004*5000 chỉ cần nhân số cuối với nhau và so sánh
Nên 2*2=4;4*0=0
Vậy a > b(5002*5002 > 5004*5000)
\(A=5002.5002\)
\(A=5002.\left(5000+2\right)\)
\(A=5002.5000+5002.2\)
\(B=5000.5004\)
\(B=5000.\left(5002+2\right)\)
\(B=5000.5002+5000.2\)
VẬY B < A
Bài 3:
a: Ta có: \(23\left(42-x\right)=23\)
\(\Leftrightarrow42-x=1\)
hay x=41
b: Ta có: 15(x-3)=30
nên x-3=2
hay x=5
Bài 1:
a: 32+89+68=100+89=189
b: 64+112+236=300+112=412
c: \(1350+360+650+40=2000+400=2400\)
Ta có :
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(A=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)
\(A=\frac{3}{2}.\frac{50}{51}\)
\(A=\frac{25}{17}\)
Vậy \(A=\frac{25}{17}\)
Chúc bạn học tốt ~
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)
\(A=\frac{3}{2}.\frac{50}{51}\)
\(A=\frac{25}{17}\)
\(B=\frac{21}{4}\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
\(B=\frac{21}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(B=\frac{21}{4}\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)\)
\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(B=\frac{21}{4}.33.\frac{4}{21}\)
\(B=\left(\frac{21}{4}.\frac{4}{21}\right).33\)
\(B=33\)
\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(C=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(C=\frac{1}{2}\left(1-\frac{1}{99}\right)\)
\(C=\frac{1}{2}.\frac{98}{99}\)
\(C=\frac{49}{99}\)
\(\frac{5003\cdot50045004}{5004\cdot50035004-5004}\)
\(=\frac{5003.50045004}{5004\cdot5003}\)
\(=\frac{50045004}{5004}=10001\)