Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e)\(\frac{0,1997+2,5\cdot12,5\cdot0,4\cdot0,08+8,003}{1,25\cdot2,5\cdot8\cdot4}=\frac{0,1997+1+8,003}{100}=\frac{2}{100}=\frac{1}{50}\)
g)\(\frac{\left(10,6524+0,3476\right)\cdot125\cdot0,4+8}{4\cdot0,1\cdot8\cdot0,25\cdot125}=\frac{11\cdot125\cdot0,4+8}{100}=\frac{558}{100}=5,58\)
=\(\frac{\left(0,8.1,25\right).\left(0,4.25\right)+1}{\left(4.25\right).\left(1,25.8\right)}\)=\(\frac{1.10}{100.10}=\frac{10}{1000}=\frac{1}{100}\)
\(A=\frac{1.2+2.4+3.6+4.8+5.10}{3.4+6.8+9.12+12.16+15.20}\)
\(A=\frac{1.2.\left(1+2^2+3^2+4^2+5^2\right)}{3.4.\left(1+2^2+3^2+4^2+5^2\right)}\)
\(A=\frac{1.2}{3.4}\)
\(A=\frac{1}{6}\)
Ta thấy : \(B=\frac{111111}{666665}>\frac{111111}{666666}=\frac{1}{6}\)
Vậy B > A
Theo đề bài, ta có:
\(A=\frac{1\times2+2\times4+3\times6+4\times8+5\times10}{3\times4+6\times8+9\times12+12\times16+15\times20}\)
\(A=\frac{1\times2\times\left(1+2^2+3^2+4^2+5^2\right)}{3\times4\times\left(1+2^2+3^2+4^2+5^2\right)}\)
\(A=\frac{1\times2}{3\times4}\)
\(A=\frac{1}{6}\)
Ta thấy rằng: \(B=\frac{111111}{666665}>\frac{111111}{666666}=\frac{1}{6}\)
Vậy \(B>A\)
a)\(\frac{13}{15}+\frac{13}{35}+\frac{13}{63}+\frac{13}{99}\)
\(=\frac{13}{3.5}+\frac{13}{5.7}+\frac{13}{7.9}+\frac{13}{9.11}\)
\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{11}\right)\)
\(=\frac{13}{2}\cdot\frac{8}{33}\)
\(=\frac{52}{33}\)
a) Đặt A= 13/15 + 13/35 + 13/63 + 13/99
A = 13/2 ( 2/15 + 2/35 + 2/63 + 2/99)
A= 13/2 ( 2/ 3.5 + 2/5.7 + 2/7.9 + 2/9.11)
A= 13/2 ( 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11)
A= 13/2 ( 1/3 - 1/11)
A= 13/2 . 8/33
A= 52/33
\(=\frac{219}{520}=\frac{155052}{368160}\)
\(=\frac{303}{708}=\frac{157560}{368160}\)
\(\frac{155052}{368160}< \frac{157560}{368160}\)
VẬY \(\frac{303}{708}\)LỚN HƠN
a)\(\frac{25.4-0,5\cdot40\cdot0,2\cdot20\cdot0,25}{1+2+8+...+129+156}\)
\(=\frac{100-100}{1+2+8+...+156}\)
\(=\frac{0}{1+2+8+...+156}\)
\(=0\)
b)\(\frac{0,5\cdot40-0,5\cdot20\cdot8\cdot0,1\cdot0,25\cdot10}{128:8.16.4\left(4+52:4\right)}=\frac{20-20}{128:8.16.4.\left(4+52:4\right)}=\frac{0}{128:8.16.4.\left(4+52:4\right)}=0\)