Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2013.2012-1}{2011.2013+2012}\)
\(A=\frac{2013\left(2011+1\right)-1}{2011.2013+2012}\)
\(A=\frac{2013.2011+2013-1}{2011.2013+2012}\)
\(A=\frac{2013.2011+2012}{2011.2013+2012}\)
\(A=1\)
A=\(\frac{1}{2}\).\(\frac{2}{3}\)....\(\frac{2012}{2013}\)=\(\frac{1}{2013}\)
B=\(\frac{2012}{2012.2013}\)=\(\frac{1}{2013}\)
vậy A=B
\(\frac{2012.2011+2012.11+2000}{2013.2011-2011.2012}=\frac{2012.\left(2011+11\right)+2000}{2011.\left(2013-2012\right)}\)
\(=\frac{2012.2022+2000}{2011}\)
\(=\frac{4068264+2000}{2011}\)
\(=\frac{4070264}{2011}\)
\(=2024\)
~~ HỌC TỐT ~~ !! >-<
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$
Đặt phân thức trên là D
=> D=(1+1+1+1+...+1+2013/2+2012/3+...+2/2013+1/2014)/(1/2+1/3+1/4+...+1/2014)
=> D=(1+2013/2+1+2012/3+1+2011/4+...+1+2/2013+1+1/2014+1)/(1/2+1/3+1/4+1/5+...+1/2014)
=> D=(2015/2+2015/3+2015/4+...+2015/2013+2015/2014+1)/(1/2+1/3+1/4+...+1/2014)
=> D=[2015*(1/2+1/3+1/4+1/5+....+1/2014)]/(1/2+1/3+1/4+1/5+...+1/2014)
=> D=2015
\(MS=2011.2013+2012\)
\(=\left(2012-1\right).2013+2012\)
\(=2012.2013-2013+2012\)
\(=2013.2012-1\)
\(=TS\)
Vậy phân số đã cho bằng 1.
Trả lời:
\(\frac{2013.2012-1}{2011.2013+2012}=\frac{2013.\left(2011+1\right)-1}{2011.2013+2012}\)
\(=\frac{2011.2013+2013-1}{2011.2013+2012}\)
\(=\frac{2011.2013+2012}{2011.2013+2012}\)
\(=1\)
Học tốt