K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2015

c;=(50-49)(50+49)+(48-47)(48+47)+.............+(2+1)(2-1)

=50+49+48+............+1

=(50+1)50=2550:2=1275

d;=(2^4-1)(2^4+1)(2^8+1)(2^16+1)

=(2^8-1)(2^8+1)(2^16+1)

=(2^16-1)(2^16+1)

=2^32-1

e;=(3-1)(3+1)(3^2+1)...........(3^16+1)

=(3^2-1)(3^2+1)..............(3^16+1)

=(3^16-1)(3^16+1)=3^32-1

tu tinh ket qua luy thua tao khong thua hoi dau

18 tháng 5 2022

\(B=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)

\(B=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+\dfrac{49}{1}\)

\(B=\left(\dfrac{50}{49}+\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}\right)+1\)

\(B=\dfrac{50}{50}+\dfrac{50}{49}+\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}\)

\(B=50\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+...+\dfrac{1}{2}\right)\)

\(\Rightarrow\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}}{50\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+...+\dfrac{1}{2}\right)}=\dfrac{1}{50}\)

8 tháng 7 2019

a) \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)-2^{16}\)

\(=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)-2^{16}\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)-2^{16}\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)-2^{16}\)

\(=\left(2^8-1\right)\left(2^8+1\right)-2^{16}\)

\(=2^{16}-1-2^{16}\)

\(=-1\)

8 tháng 7 2019

=(50-49)(50+49)+(48-47)(48+47).............. +(2-1)(2+1)

=1.99+1.95+1.91................+1.33

=(99+3).25=2550

a) Ta có: \(A=\dfrac{16^8-1}{\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)

\(=\dfrac{2^{32}-1}{\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)

\(=\dfrac{2^{32}-1}{\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)

\(=\dfrac{2^{32}-1}{\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)

\(=\dfrac{2^{32}-1}{\left(2^{16}-1\right)\left(2^{16}+1\right)}\)

\(=\dfrac{2^{32}-1}{2^{32}-1}=1\)

b) Ta có: \(B=\dfrac{\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{9^{16}-1}\)

\(=\dfrac{\left(3^2-1\right)\cdot\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\cdot\left(3^{32}-1\right)}\)

\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\cdot\left(3^{32}-1\right)}\)

\(=\dfrac{\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\left(3^{32}-1\right)}\)

\(=\dfrac{\left(3^{16}-1\right)\left(3^{16}+1\right)}{2\left(3^{32}-1\right)}=\dfrac{1}{2}\)

11 tháng 7 2021

mk cảm ơn ah

 

11 tháng 7 2017

Câu b :

\(A=\left(50^2+48^2+46^2+.........+4^2+2^2\right)-\left(49^2+47^2+45^2+.........+5^2+3^2+1^2\right)\)

\(A=\left(50^2-49^2\right)+\left(48^2-47^2\right)+.........\left(4^2-3^2\right)+\left(2^2-1^2\right)\)

\(A=\left(50+49\right)\left(50-49\right)+\left(48+47\right)\left(48-47\right)+..........+\left(4+3\right)\left(4-3\right)+\left(2+1\right)\left(2-1\right)\)

\(A=50+49+48+..........+3+2+1\)

\(A=\dfrac{50.51}{2}\)

\(\Rightarrow A=1275\)

11 tháng 7 2017

a, \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1\)

11 tháng 7 2017

ĐĂNG 2 LẦN RÒI ĐÓ SƯ PHỤ

12 tháng 7 2017

đang là mod hay sao mà câu a nhìu người ddawng quá

10 tháng 10 2020

TUI ĐANG GẤP CHO TÔI HỎI BÀI NÀY LỚP 2 NHA\\\\

AN CÓ 180 CÁI KẸO.BÌNH CÓ 160. HỎI BÌNH CÓ MẤY CÁI KẸO

10 tháng 10 2020

a) Ta có: \(2.4.\left(3^2+1\right)\left(3^4+1\right)...\left(3^{16}+1\right)\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{16}+1\right)\)

\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(=3^{32}-1\)

17 tháng 7 2019

3.5.17.257.65537=4294901760