Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức tính dãy số : [( số cuối - số đầu ) : khoảng cách + 1] x ( số cuối + số đầu) : 2
Ta có :
a) 1 + 2 + 3 + 4 + ..... + n = [ ( n - 1) : 1 + 1 ] x ( n + 1) : 2 = n x ( n + 1) : 2
a) A = 1 + 2 + 3 + 4+... + 50;
Tổng A có 50 số hạng nên A = (1 + 50).50:2 = 1275,
b) B = 2 + 4 + 6 + 8 + ...+100;
Số số hạng của tổng B là: (100 - 2): 2+1 = 50 (số)
Do đó B = (2 +100).50 : 2 = 2550.
c) C = 1 + 3 + 5 + 7 +... + 99;
Số số hạng của tổng C là: (99 - 1): 2 +1 = 50 (số)
Do đó C = (1 + 99). 50 : 2 = 2500.
d = 2 + 5 + 8 + 11 .... 98
= ( 92 - 2 ) : 3 + 1 = 33
= 33 . ( 98 + 2 ) : 2
= 1650
tick cho tớ với
a) =\(\frac{n\left(n+1\right)}{2}\)
b) =\(n\left(n+1\right)\)
c) =\(\left(n+1\right)^2\)
d) =\(\left(2008+1\right).\left(\frac{2008-1}{3}+1\right):2=673015\)
ta tính các tổng theo công thức:
tổng có số các số hạng là: (số đầu - số cuối) : khoảng cách +1
giá trị của tổng: (số đầu+ cuối). số số hạng :2
áp dụng tính
a) số số hạng: (n-1):1+1=n-1
giá trị: \(\left(n+1\right)\left(n-1\right):2=\frac{\left(n^2-1\right)}{2}\)
b) \(=\left(2n-1+1\right).\left(\frac{2n-1-1}{2}+1\right):2=2n\frac{2n}{2}:2=n^2\)
c) \(=\left(2n+2\right)\left(\frac{2n-2}{2}+1\right)=2\left(n+1\right)2n:2=2n\left(n+1\right)\)
A = 1 + 2 + 3 + ... + n
A = (n + 1).n : 2
B = 1 + 3 + 5 + ... + (2n - 1)
B = (2n - 1 + 1).[(2n - 1 - 1) : 2 + 1]
B = 2n[(2n - 2) : 2 + 1]
B = 2n[2(n - 2) : 2 + 1]
B = 2n(n - 2 + 1)
B = 2n(n - 1)
C = 2 + 4 + 6 + ... + 2n
C = (2n + 2)[(2n - 2) : 2 + 1]
C = 2(n + 1)[2(n - 1) : 2 + 1]
C = 2(n + 1)(n - 1 + 1)
C = 2(n + 1)n
a: =(1-2-3+4)+(5-6-7+8)+...+(21-22-23+24)
=0+0+...+0
=0
b: =-7111+53+711-153=-6400-100=-6500
c: =-43(-1-296+296)=-43*(-1)=43
tim cái j
toàn là n , chắc là tìm n đó bạn