Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\frac{7-1}{1.3.7}+\frac{9-3}{3.7.9}+\frac{13-7}{7.9.13}+\frac{15-9}{9.13.15}\)\(+\frac{19-13}{13.15.19}\)
\(=\frac{1}{1.3}-\frac{1}{3.7}+\frac{1}{3.7}-\frac{1}{7.9}+\frac{1}{7.9}-\frac{1}{9.13}+\frac{1}{9.13}-\frac{1}{13.15}+\frac{1}{13.15}-\frac{1}{15.19}\)
\(=\frac{1}{1.3}-\frac{1}{15.19}=\frac{95}{285}-\frac{1}{285}=\frac{94}{285}\)
\(b,=\frac{1}{6}.\left(\frac{6}{1.3.7}+\frac{6}{3.7.9}+\frac{6}{7.9.13}+\frac{6}{9.13.15}+\frac{6}{13.15.19}\right)\)
làm giống như trên
\(c,=\frac{1}{8}.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{50-48}{48.49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{1}{2}-\frac{1}{2450}\right)=\frac{1}{16}.\left(\frac{1225}{2450}-\frac{1}{2450}\right)=\frac{153}{4900}\)
\(d,=\frac{5}{7}.\left(\frac{7}{1.5.8}+\frac{7}{5.8.12}+\frac{7}{8.12.15}+...+\frac{7}{33.36.40}\right)\)
\(=\frac{5}{7}.\left(\frac{8-1}{1.5.8}+\frac{12-5}{5.8.12}+\frac{15-8}{8.12.15}+...+\frac{40-33}{33.36.40}\right)\)
\(=\frac{5}{7}.\left(\frac{1}{1.5}-\frac{1}{5.8}+\frac{1}{5.8}-\frac{1}{8.12}+\frac{1}{8.12}-\frac{1}{12.15}+...+\frac{1}{33.36}-\frac{1}{36.40}\right)\)
\(=\frac{5}{7}.\left(\frac{1}{5}-\frac{1}{1440}\right)=\frac{5}{7}.\left(\frac{288}{1440}-\frac{1}{1440}\right)=\frac{41}{288}\)
P/S: . là nhân nha
\(A=\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+........+\frac{1}{100.104}\)
\(=\frac{1}{4}.\left(\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+.......+\frac{4}{100.104}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+.......+\frac{1}{100}-\frac{1}{104}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{5}-\frac{1}{104}\right)\)
\(=\frac{1}{4}.\frac{99}{520}=\frac{99}{2080}\)
\(A=\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+.......\frac{1}{13x15}=\frac{1}{2}x\frac{2}{1x3}+\frac{2}{3x5}.......+\frac{2}{13x15}\)
\(A=\frac{1}{2}x\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}\right)\)
Còn lại em nhân giống ở trên nhé
Đặt A = 1/15 + 1/35 + ... + 1/3135
A = 1/3.5 + 1/5.7 + ... + 1/55.57
2A = 2/3.5 + 2/5.7 + ... + 2/55.57
2A = 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/55 - 1/57
2A = 1/3 - 1/57 = 6/19
A = 3/19
Bài làm:
\(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right).y=\frac{2}{3}\)
\(\Leftrightarrow\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right).y=\frac{4}{3}\)
\(\Leftrightarrow\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+\frac{11-9}{9.11}\right).y=\frac{4}{3}\)
\(\Leftrightarrow\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right).y=\frac{4}{3}\)
\(\Leftrightarrow\left(1-\frac{1}{11}\right).y=\frac{4}{3}\)
\(\Leftrightarrow\frac{10}{11}.y=\frac{4}{3}\)
\(\Leftrightarrow y=\frac{4}{3}:\frac{10}{11}=\frac{4}{3}.\frac{11}{10}=\frac{22}{15}\)
Chú ý dấu \(\left(.\right)\)là dấu \(\left(\times\right)\)
Vậy \(y=\frac{22}{15}\)
\(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right).y=\frac{2}{3}\)
\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\Leftrightarrow\frac{1}{2}.\frac{10}{11}.y=\frac{2}{3}\)
\(\Leftrightarrow\frac{5}{11}.y=\frac{2}{3}\)
\(\Rightarrow y=\frac{2}{3}:\frac{5}{11}=\frac{22}{15}\)
LƯU Ý:các dấu chấm(.) là dấu nhân ^^.
( 1-1/2) . (1-1/3).(1-1/4).......(1-1/2016) . (1-1/2017)
=1/2.2/3.3.4x...x2015/2016.2016/2017
=1.2.3.4. ... .2015.2016/2.3.4.5. ... .2016.2017
(giống nhau bạn gạch đi )
=1/2017