Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3 A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98) ..................................
A x 3 = 99x100x101 A = 333300
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
..................................
A x 3 = 99x100x101
A = 333300
\(\Rightarrow3M=1.2.3+2.3.3+...+201.202.3\)
\(=1.2.3+2.3.\left(4-1\right)+...+201.202.\left(203-200\right)\)
\(=1.2.3+2.3.4-1.2.3+...+201.202.203-200.201.202\)
\(=201.202.203\)
\(\Rightarrow M=\frac{201.202.203}{3}\)
=1-1/2+1/2-1/3+...+1/1981-1/1982
=1-1/1982
=1981/1982
Lời giải:
$\frac{1}{1\times 2}+\frac{1}{2\times 3}+\frac{1}{3\times 4}+....+\frac{1}{1981\times 1982}$
$=\frac{2-1}{1\times 2}+\frac{3-2}{2\times 3}+\frac{4-3}{3\times 4}+...+\frac{1982-1981}{1981\times 1982}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1981}-\frac{1}{1982}$
$=1-\frac{1}{1982}=\frac{1981}{1982}$
=1x2x3+2x3x3+...+98x99x3
=1x2x3+2x3x(4-1)+...+98x99x(100-97)
=1x2x3+2x3x4-1x2x3+...+98x99x100-97x98x99
=98x99x100
=970200
S = 333300 NHA , BẠN CÓ CẦN CÁCH GIẢI KO
S = 1.2+2.3+3.4+......+99.100
Gấp S lên 3 lần ta có:
S . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
S . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
S . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100
S . 3 = 99.100.101
S = 99.100.101 : 3
S = 33.100.101
S = 333 300