K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021

\(f\left(x\right)⋮g\left(x\right)\)

\(\Leftrightarrow x^4-3x^3+4x^2-x^2+3x-4+\left(a-3\right)x+\left(b+4\right)⋮x^2-3x+4\)

\(\Leftrightarrow\left(a,b\right)=\left(3;-4\right)\)

29 tháng 12 2021

a: \(M=\dfrac{2\left(1-3x\right)\left(1+3x\right)}{3x\left(x+2\right)}\cdot\dfrac{3x}{2\left(1-3x\right)}=\dfrac{3x+1}{x+2}\)

29 tháng 12 2021

mình rất cần cả 3 phần mừ

 

6 tháng 7 2017

Q = 2x2 - 6x 

   = 2 ( x2 - 3x  + 9/4 ) - 9/2 

   = 2 ( x - 3/2)2 - 9/2 

  +) Ta có: 2( x - 3/2)2 \(\ge\) 0 

=> 2(x - 3/2)2 - 9/2 \(\ge\) -9/2  

Vậy GTNN của Q = -9/2 khi x = 3/2 

^^ 

14 tháng 2 2016

\(a.\)  Từ  \(x-2y=1\)  \(\Rightarrow\)  \(x=1+2y\)  \(\left(\text{*}\right)\)

Thay  \(x=1+2y\)  vào \(A\), khi đó, biểu thức \(A\)  trở thành

\(A=\left(1+2y\right)^2+y^2+4=1+4y+4y^2+y^2+4=5y^2+4y+5\)

\(A=5\left(y^2+\frac{4}{5}y+1\right)=5\left(y^2+2.\frac{2}{5}.y+\frac{4}{25}+\frac{21}{25}\right)=5\left(y+\frac{2}{5}\right)^2+\frac{21}{5}\ge\frac{21}{5}\)  với mọi  \(y\)

Dấu  \(''=''\)   xảy ra  \(\Leftrightarrow\)  \(\left(y+\frac{2}{5}\right)^2=0\)  \(\Leftrightarrow\)  \(y+\frac{2}{5}=0\)  \(\Leftrightarrow\)  \(y=-\frac{2}{5}\)

Thay  \(y=-\frac{2}{5}\)  vào \(\left(\text{*}\right)\), ta được \(x=\frac{1}{5}\)

Vậy,  \(A\)  đạt giá trị nhỏ nhất là  \(A_{min}=\frac{21}{5}\)  khi và chỉ khi   \(x=\frac{1}{5}\)  và  \(y=-\frac{2}{5}\)

\(b.\)  Gọi  \(Q\left(x\right)\)  là thương của phép chia và dư là \(r=ax+b\)  (vì dư trong phép chia cho  \(x^2-1\)  có bậc cao nhất là bậc nhất), với mọi  \(x\)  ta có:

\(x^{2008}-x^3+5=\left(x^2-1\right).Q\left(x\right)+ax+b\)   \(\left(\text{**}\right)\)

Với  \(x=1\)  thì  phương trình \(\left(\text{**}\right)\)  trở thành  \(5=a+b\)  \(\left(1\right)\)

Với  \(x=-1\)  thì phương trình  \(\left(\text{**}\right)\)  trở thành \(7=-a+b\)  \(\left(2\right)\)

Giải hệ phương trình  \(\left(1\right)\)  và  \(\left(2\right)\), ta được \(a=-1\)  và  \(b=6\)

Vậy, dư trong phép chia đa thức  \(x^{2008}-x^3+5\)  cho đa thức \(x^2-1\)  là  \(-x+6\)

 

5 tháng 9 2021

\(a,9x^2+y^2+2z^2-18x+4z-6y+20=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

\(b,5x^2+5y^2+8xy+2y-2x+2=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(c,5x^2+2y^2+4xy-2x+4y+5=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

\(d,x^2+4y^2+z^2=2x+12y-4z-14\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)

\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Pt vô nghiệm do ko có 2 bình phương số nguyên có tổng là 11

 

 

e: Ta có: \(x^2-6x+y^2+4y+2=0\)

\(\Leftrightarrow x^2-6x+9+y^2+4y+4-11=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Dấu '=' xảy ra khi x=3 và y=-2