Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy\left(x-y\right)+yz\left(y-z\right)+xz\left(z-x\right)\\ =xy\left(x-y\right)+yz\left[-\left(x-y\right)-\left(z-x\right)\right]+xz\left(z-x\right)\\ =xy\left(x-y\right)-yz\left(x-y\right)-yz\left(z-x\right)+xz\left(z-x\right)\\ =\left(x-y\right)\left(xy-yz\right)+\left(z-x\right)\left(xz-yz\right)\\ =y\left(x-y\right)\left(x-z\right)+z\left(z-x\right)\left(x-y\right)\\ =\left(x-y\right)\left(x-z\right)\left(y-z\right)\)
bạn tách một câu vài câu hỏi chứ đừng gộp như thế này ko ai trả lời đâu
a: =>\(4x-5=2x-2+x=3x-2\)
=>x=3
b: \(\Leftrightarrow7x-35=3x+6\)
=>4x=41
=>x=41/4
c: =>(2x+5)(x+5)-2x^2=0
=>2x^2+10x+5x+25-2x^2=0
=>15x=-25
=>x=-5/3
e: \(\Leftrightarrow\dfrac{11}{x}=\dfrac{9x-36+2x+2}{\left(x+1\right)\left(x-4\right)}\)
=>11(x^2-3x-4)=x(11x-34)
=>11x^2-33x-44=11x^2-34x
=>x=44
Đặt 3759=a; 5741=b
Theo đề, ta có: \(E=4\dfrac{7}{b}\cdot\dfrac{1}{a}-\dfrac{4}{a}\cdot\left(1+\dfrac{2}{b}\right)+\dfrac{1}{a}+\dfrac{1}{ab}\)
\(=\dfrac{4b+7}{b}\cdot\dfrac{1}{a}-\dfrac{4}{a}\cdot\dfrac{b+2}{b}+\dfrac{b+1}{ab}\)
\(=\dfrac{4b+7-4b-8+b+1}{ab}=\dfrac{b}{ab}=\dfrac{1}{a}=\dfrac{1}{3759}\)