K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2023

A = \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\) + \(\dfrac{1}{90}\) + \(\dfrac{1}{110}\) + \(\dfrac{1}{132}\)

A = \(\dfrac{1}{4\times5}\) + \(\dfrac{1}{5\times6}\) + \(\dfrac{1}{6\times7}\)\(\dfrac{1}{7\times8}\)+\(\dfrac{1}{8\times9}\)\(\dfrac{1}{9\times10}\) + \(\dfrac{1}{10\times11}\)+\(\dfrac{1}{11\times12}\)

A = \(\dfrac{1}{4}\)-\(\dfrac{1}{5}\) +\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\) +.....+\(\dfrac{1}{11}\) - \(\dfrac{1}{12}\)

A = \(\dfrac{1}{4}\) - \(\dfrac{1}{12}\)

A = \(\dfrac{1}{6}\)

 

31 tháng 12 2022

Có công thức \(\dfrac{x}{a\left(a+x\right)}=\dfrac{1}{a}-\dfrac{1}{a+x}\) nhé!

Ví dụ: \(\dfrac{2}{2.4}=\dfrac{1}{2}-\dfrac{1}{4}\)

\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)

\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{7}-\dfrac{1}{8}\)

\(=1-\dfrac{1}{8}=\dfrac{7}{8}\)

Dấu . tức là nhân nhé!

a: \(\Leftrightarrow\dfrac{32}{x}=\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{99}\)

=>32/x=1/3-1/5+1/5-1/7+...+1/9-1/11

=>32/x=1/3-1/11=8/33

=>x=32:8/33=132

b: \(\Leftrightarrow1-\dfrac{1}{6}+1-\dfrac{1}{12}+...+1-\dfrac{1}{56}=\dfrac{x}{16}\)
\(\Leftrightarrow6-\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{7}-\dfrac{1}{8}\right)=\dfrac{x}{16}\)

=>x/16=6-1/2+1/8=11/2+1/8=45/8=90/16

=>x=90

c: \(\Leftrightarrow\dfrac{22}{x}=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{10}\right)\left(1+\dfrac{1}{10}\right)\)

=>22/x=1/2*2/3*...*9/10*3/2*4/3*...*11/10

=>22/x=1/10*11/2=11/20=22/40

=>x=40

sau đây là phần chữa của mình: 

\(=\dfrac{1}{2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)

\(=\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

 \(=\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{10}\)

\(\dfrac{3}{10}\)

\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\dfrac{1}{2}-\dfrac{1}{10}\)

\(\dfrac{2}{5}\)

21 tháng 11 2021

\(\Rightarrow x+\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}=\dfrac{47}{42}\\ \Rightarrow x+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}=\dfrac{47}{42}\\ \Rightarrow x+1-\dfrac{1}{6}=\dfrac{47}{42}\\ \Rightarrow x=\dfrac{47}{42}-\dfrac{5}{6}=\dfrac{2}{7}\)

21 tháng 11 2021

\(x=\dfrac{2}{7}\)

7 tháng 9 2021

\(\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{1}{5}+\dfrac{32}{40}+\dfrac{48}{56}+\dfrac{14}{21}\\ =\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{1}{5}+\dfrac{4}{5}+\dfrac{6}{7}+\dfrac{2}{3}\\ =\left(\dfrac{1}{3}+\dfrac{2}{3}\right)+\left(\dfrac{1}{7}+\dfrac{6}{7}\right)+\left(\dfrac{1}{5}+\dfrac{4}{5}\right)\\ =1+1+1=3\)

AH
Akai Haruma
Giáo viên
7 tháng 9 2021

Lời giải:

$\frac{1}{3}+\frac{1}{7}+\frac{1}{5}+\frac{32}{40}+\frac{48}{56}+\frac{14}{21}$

$=\frac{1}{3}+\frac{1}{7}+\frac{1}{5}+\frac{4}{5}+\frac{6}{7}+\frac{2}{3}$

$=(\frac{1}{3}+\frac{2}{3})+(\frac{1}{7}+\frac{6}{7})+(\frac{1}{5}+\frac{4}{5})$

$=\frac{3}{3}+\frac{7}{7}+\frac{5}{5}=1+1+1=3$

(y - \(\dfrac{1}{2}\)) : \(\left(\dfrac{1}{2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\right)\)\(\dfrac{1}{3}\)

(y\(-\dfrac{1}{2}\)): \(\left(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)\(\dfrac{1}{3}\)

\(\left(y-\dfrac{1}{2}\right):\left(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{10}\right)=\dfrac{1}{3}\)

\(\left(y-\dfrac{1}{2}\right):\dfrac{3}{10}=\dfrac{1}{3}\)

\(\left(y-\dfrac{1}{2}\right)=\dfrac{1}{10}\)

y = \(\dfrac{3}{5}\)