K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2018

a) \(A=2+6+8+10+....+2018\)

\(A=2\left(1+2+3+4+....+1009\right)\)

ta có \(1+2+3+4+...+n=\dfrac{\left(n+1\right).n}{2}\)

với n=1009 ta có \(1+2+3+....+1009=\dfrac{1010.1009}{2}\)

\(\Rightarrow A=2.\dfrac{1010.1009}{2}=1010.1009\)

\(B=2018-2017+2016-2015+....+2-1\)

\(B=1+1+1+1+....+1\)

tất cả có 2018 số mà cứ hiệu 2 số =1 vậy B có 1009 số 1

vậy \(B=1009\)

8 tháng 12 2017

a) \(\left(2^{2016}+2^{2017}+2^{2018}\right):\left(2^{2014}+2^{2015}+2^{2016}\right)\)

\(=\dfrac{2^{2016}+2^{2017}+2^{2018}}{2^{2014}+2^{2015}+2^{2016}}\)

\(=\dfrac{2^{2016}\left(1+2+2^2\right)}{2^{2014}\left(1+2+2^2\right)}\)

\(=\dfrac{2^{2016}}{2^{2014}}\)

\(=2^{2016-2014}\)

\(=2^2\)

\(=4\)

b)

\(3^{500}=3^{5.100}=\left(3^5\right)^{100}=243^{100}\)

\(7^{300}=7^{3.100}=\left(7^3\right)^{100}=343^{100}\)

\(243< 343\)

Nên \(243^{100}< 343^{100}\)

Vậy \(3^{500}< 7^{300}\)

13 tháng 12 2017

tthấy cách này dễ hơn :

(22016+22017+22018):(22014+22015+22016)

=22016.(1+2+22):22014.(1+2+22)

=(22016.7)+(22014.7)

=22

=4

11 tháng 11 2017

đề bài nhìn kiểu gì mà kinh khủng thế

11 tháng 11 2017

Nếu x chắn => x2 \(⋮\) 4 mà 4x \(⋮\) 4

=> VT chia 4 dư 3

2015 chia 4 dư 1 => 20152018 chia 4 dư 1

2010 chia 4 dư 2 => 20102017 chia hết cho 4

=> VP chia 4 dư 1 => vô n0

Nếu x lẻ thì VT chia hết cho 4 VP ko chia hết => vô n0

Vậy pt vô n0

19 tháng 1 2021

Áp dụng BĐT Cosi cho 2018 số:

\(2017.6^{2018}.\sqrt[2017]{m}+\dfrac{\left(2a\right)^{2018}}{m}\ge2018\sqrt[2018]{\left(6^{2018}.\sqrt[2017]{m}\right)^{2017}\dfrac{\left(2a\right)^{2018}}{m}}=2018.2.6^{2017}.a\)

\(\Leftrightarrow\dfrac{\left(2a\right)^{2018}}{m}\ge2018.2.6^{2017}.a-2017.6^{2018}.\sqrt[2017]{m}\)

\(\Leftrightarrow\dfrac{2\left(2a\right)^{2018}}{m}\ge2018.4.6^{2017}.a-2017.2.6^{2018}.\sqrt[2017]{m}\)

Tương tự: \(\dfrac{2\left(2b\right)^{2018}}{n}\ge2018.4.6^{2017}.b-2017.2.6^{2018}.\sqrt[2017]{n}\)

\(\dfrac{3.c^{2018}}{p}\ge2018.3.6^{2017}.c-2017.6^{2018}.3.\sqrt[2017]{p}\)

\(\Rightarrow S\ge2018.6^{2017}\left(4a+4b+3c\right)-2017.6^{2018}\left(2\sqrt[2017]{m}+2\sqrt[2017]{n}+3\sqrt[2017]{p}\right)\)

\(\ge2018.6^{2017}.42-2017.6^{2018}.7=7.6^{2018}>6^{2018}\)

Vậy \(S>6^{2018}\)

19 tháng 8 2019

\(A=\frac{19}{ab}+\frac{6}{a^2+b^2}+2018\left(a^4+b^4\right)\)

\(=6\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{16}{ab}+2018\left(a^4+b^4\right)\)

\(\ge\frac{24}{\left(a+b\right)^2}+\frac{64}{\left(a+b\right)^2}+\frac{2018\left(a+b\right)^4}{8}=24+64+\frac{2018}{8}=\frac{1361}{4}\)

Vậy GTNN của A là \(\frac{1361}{4}\) khi \(a=b=\frac{1}{2}\)

7 tháng 1 2018

\(A=1+3^1+3^2+3^3+...+3^{2017}\\ 3A=3+3^2+3^3+3^4+...+3^{2018}\\ 3A-A=\left(3+3^2+3^3+3^4+...+3^{2018}\right)-\left(1+3+3^2+3^3+...+3^{2017}\right)\\ 2A=3^{2018}-1\\ A=\dfrac{3^{2018}-1}{2}\\ A-B=\dfrac{3^{2018}-1}{2}-\dfrac{3^{2018}}{2}=\dfrac{3^{2018}-1-3^{2018}}{2}=-\dfrac{1}{2}\)

7 tháng 1 2018

Nay onl lại à :))