Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
A = 1 + 3 + 32 + ... + 3100
=> 3A = 3 + 32 + ... + 3101
=> 2A = 3101 - 1
=> A = \(\frac{3^{101}-1}{2}\)
B = 1 + 42 + 44 + ... + 4100
=> 8B = 42 + 44 + ... + 4102
=> 7B = 4102 - 1
=> B = \(\frac{4^{102}-1}{7}\)
Bài 2:
a) S1 = 22 + 42 + ... + 202
=> S1 = 22(1+22+...+102)
=> S1 = 22.385
=> S1 = 1540
b) S2 = 1002 + 2002 + ... + 10002
=> S2 = 1002(1+22+...+102)
=> S2 = 1002.385
=> S2 = 3850000
Bài 3:
a: a*S=a^2+a^3+...+a^2023
=>(a-1)*S=a^2023-a
=>\(S=\dfrac{a^{2023}-a}{a-1}\)
b: a*B=a^2-a^3+...-a^2023
=>(a+1)B=a-a^2023
=>\(B=\dfrac{a-a^{2023}}{a+1}\)
=1.4.2.5.....98.101/2.3.3.4.....99.100
=(1.2.3.....97.98)(4.5.....100.101)/(2.3.....99)(3.4.....100)
=1.101/99.3
=101/297
Bạn tuấn anh có thể giải thích rõ cho mik vì sao bạn có thể ra dược bước 1ko?
Lời giải:
$A=1-3+3^2-3^3+3^4-....+3^{38}-3^{39}$
$3A=3-3^2+3^3-3^4+3^5-...+3^{39}-3^{40}$
$A+3A=(1-3+3^2-3^3+3^4-....+3^{38}-3^{39})+(3-3^2+3^3-3^4+3^5-...+3^{39}-3^{40})$
$4A=1-3^{40}$
b.
Xét $B=1-3+3^2-3^3+....+3^{98}-3^{99}$
$3B=3-3^2+3^3-3^4+....+3^{99}-3^{100}$
$\Rightarrow B+3B=1-3^{100}$
$4B=1-3^{100}$
$3^{100}=1-4B$
Suy ra $3^{100}$ chia $4$ dư $1$
+) \(A=1+3+3^2+3^3+3^4+...+3^{100}\)
\(\Leftrightarrow3A=3+3^2+3^3+3^4+3^5+....+3^{101}\)
\(\Leftrightarrow3A-A=2A=3^{101}-1\)
\(\Leftrightarrow A=\dfrac{3^{101}-1}{2}\)
\(B=1+4^2+4^3+4^4+...+4^{100}\)
\(\Leftrightarrow4B=4+4^3+4^4+..+4^{101}\)
\(\Leftrightarrow3B=4^{101}+4-4^2-1\)
\(\Leftrightarrow B=\dfrac{4^{101}-13}{3}\)