K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2016

a.\(x^2-2.3.x+\left(3\right)^2=\left(x-3\right)^2\)

Mà x=-2 

\(\Rightarrow\left(-2-3\right)^2=\left(-5\right)^2=25\)

b.\(\left(3x\right)^2+2.3x.1+3=\left(3x+1\right)^2\)

Mà x=-6

\(\Rightarrow\left[3.\left(-6\right)+1\right]^2=\left(-18+1\right)^2=\left(-17\right)^2=289\)

T I C K nha cảm ơn nha

5 tháng 7 2016

a)x^2 -6x +9

=(x-3)2.Thay x=-2 vào ta được:

A=[(-2)-3]2=(-5)2=25

b)9x^2 + 6x + 1 

=(3x+1)2.Thay x=-6 vào ta được:

B=[(-6)*3+1]2=[(-18)+1]2

=(-17)2=289

a: \(=\dfrac{x-2x-1}{x+1}=\dfrac{-\left(x+1\right)}{x+1}=-1\)

b: \(=\dfrac{2+2x}{x\left(x+1\right)}=\dfrac{2\left(x+1\right)}{x\left(x+1\right)}=\dfrac{2}{x}\)

c: \(=\dfrac{3x-1}{2\left(3x+1\right)}+\dfrac{3x+1}{2\left(3x-1\right)}-\dfrac{6x}{\left(3x-1\right)\left(3x+1\right)}\)

\(=\dfrac{9x^2-6x+1+9x^2+6x+1-12x}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{18x^2-12x+2}{2\left(3x-1\right)\left(3x+1\right)}\)

\(=\dfrac{2\left(3x-1\right)^2}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{3x-1}{3x+1}\)

7 tháng 10 2015

a) x2-6x+10

=(x^2-6x+9)+1

=(x-3)^2+1

vì (x-3)^2>=0 với mọi x nên (x-3)^2+1>0

Hay x^2-6x+10>0

16 tháng 10 2021

\(a,=\left(x-5\right)\left(x+5\right)\\ b,=\left(x-3\right)^2\\ c,=\left(3x-2\right)\left(3x+2\right)\\ d,=\left(x+1\right)^2\\ e,=\left(x-10\right)\left(x+10\right)\)

3 tháng 3 2020

a,

đoạn 9x-6-> 2x-6=0

=> x=3

b,6x^2+13x+5=6x^2-20x+6

33x=1

=>x=1/33

3 tháng 3 2020

a) (x+1)(x+9)=(x+3)(x+5) 

<=>x^2+10x+9=x^2+8x+15

<=>x^2+10x+9-x^2-8x-15=0

<=>9x-6=0 phải là 2x - 6

<=>9x=6

<=>x=6/9=2/3 => S= 2/3

d) (3x+5)(2x+1)=(6x-2)(x-3)

<=>6x^2+13x+5=6x^2-16x+6 phải là 6x^2 - 20x + 6

<=>6x^2+13x+5-6x^2+16x-6=0

<=>29x-1=0

<=>29x=1

<=>x=1/29

a) Ta có: \(\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)

\(=\left(\dfrac{1}{x\left(x+1\right)}+\dfrac{x+2}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)

\(=\dfrac{x^2+2x+1}{x\left(x+1\right)}:\dfrac{x^2-2x+1}{x}\)

\(=\dfrac{\left(x+1\right)^2}{x\left(x+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)

\(=\dfrac{x+1}{\left(x-1\right)^2}\)

b) Ta có: \(\left(\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{1-6x+9x^2}\)

\(=\dfrac{3x\left(3x+1\right)+2x\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}:\dfrac{2x\left(3x+5\right)}{\left(1-3x\right)^2}\)

\(=\dfrac{9x^2+3x+2x-6x^2}{\left(1-3x\right)\left(1+3x\right)}:\dfrac{2x\left(3x+5\right)}{\left(1-3x\right)^2}\)

\(=\dfrac{3x^2+5x}{\left(1-3x\right)\left(1+3x\right)}\cdot\dfrac{\left(1-3x\right)^2}{2x\left(3x+5\right)}\)

\(=\dfrac{x\left(3x+5\right)}{1+3x}\cdot\dfrac{1-3x}{2x\left(3x+5\right)}\)

\(=\dfrac{2\left(1-3x\right)}{3x+1}\)

c) Ta có: \(\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\)

\(=\left(\dfrac{9}{x\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x\left(x+3\right)}-\dfrac{x}{3\left(x+3\right)}\right)\)

\(=\dfrac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)

\(=\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\cdot\dfrac{3x\left(x+3\right)}{3x-9-x^2}\)

\(=\dfrac{x^2-3x+9}{x-3}\cdot\dfrac{3}{-\left(x^2-3x+9\right)}\)

\(=\dfrac{-3}{x-3}\)