Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{7}{2}-\frac{14}{3}+\left(\frac{3}{4}-\frac{7}{3}\right)-\left(\frac{5}{6}-\frac{7}{4}\right)+\frac{11}{2}-3\)
\(=\frac{7}{2}-\frac{14}{3}+\frac{3}{4}-\frac{7}{3}-\frac{5}{6}+\frac{7}{4}+\frac{11}{2}-3\)
\(=\left(\frac{7}{2}+\frac{11}{2}\right)-\left(\frac{14}{3}+\frac{7}{3}\right)-3+\left(\frac{3}{4}+\frac{7}{4}\right)-\frac{5}{6}\)
\(=9-7-3+(\frac{5}{2}-\frac{5}{6})\)
\(=-1+\frac{5}{3}\)
\(=\frac{2}{3}\)
b) \(\frac{7}{3}-\frac{7}{5}+\frac{11}{10}-\left(\frac{2}{5}-\frac{5}{6}\right)+\frac{4}{15}-\frac{4}{3}\)
\(=\left(\frac{7}{3}-\frac{4}{3}\right)-\left(\frac{7}{5}+\frac{2}{5}\right)+(\frac{11}{10}+\frac{5}{6}+\frac{4}{15})\)
\(=1-\frac{9}{5}+\frac{11}{5}\)
\(=1-\left(\frac{9}{5}-\frac{11}{5}\right)\)
\(=1-\left(\frac{-2}{5}\right)\)
\(=1\frac{2}{5}\)
......................?
mik ko biết
mong bn thông cảm
nha ................
B=4*13/9*3-4/3*40/9
B=4/3*13/9-4/3*40/9
B=4/3*(13/9-40/9)
B=4/3*(-27)/9
B=4*(-3)/9
B=-4
A=6/7 + 1/7.(2/7+5/7)
A=6/7 + 1/7.7/7=6/7+1/7.1
A=6/7+1/7=7/7=1
b: \(B=\dfrac{5}{2}-\dfrac{7}{2}+\dfrac{3}{8}+\dfrac{6}{8}+\dfrac{-6}{11}-\dfrac{5}{11}=-2-1+\dfrac{9}{8}=\dfrac{9}{8}-3=-\dfrac{15}{8}\)
c: \(C=\left(\dfrac{4}{3}+\dfrac{7}{3}+\dfrac{1}{3}\right)+\left(\dfrac{2}{5}+\dfrac{3}{5}\right)=4+1=5\)
d: \(D=\dfrac{4}{19}\left(\dfrac{-5}{6}-\dfrac{7}{12}\right)-\dfrac{40}{57}\)
\(=\dfrac{4}{19}\cdot\dfrac{-17}{12}-\dfrac{40}{57}=-1\)
e: \(E=\dfrac{1}{3}\left(\dfrac{4}{5}-\dfrac{9}{5}\right)+\dfrac{2}{3}=\dfrac{2}{3}-\dfrac{1}{3}=\dfrac{1}{3}\)
a) \(B=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}-\frac{1}{8}+\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\)
\(=\frac{1}{2}-\frac{1}{14}=\frac{3}{7}\)
b) Ta có : A = \(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{99.100}\)
\(=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=3.\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}=\frac{297}{100}\)