K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

= 5-2/2x5+8-5/5x8+11-8/8x11+14-11/11x14

=(1/2-1/5)+(1/5-1/8)+(1/8-1/11)+(1/11-1/14)

=(1/2+1/5+1/8+1/11)-(1/5+1/8+1/11+1/14)

=1/2-1/14

=3/7

Vậy B=3/7

16 tháng 8 2017

B = 3/2x5 + 3/5x8 + 3/8x11 + 3/11x14

B = 1/2 - 1/5 + 1/5 - 1/8 + ..... + 1/14 - 1/17

B = 1/2 - 1/17

B = 15/34

14 tháng 5 2018

\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\)

\(=\frac{1}{2}-\frac{1}{14}\)

\(=\frac{7}{14}-\frac{1}{14}\)

\(=\frac{6}{14}\)

\(=\frac{3}{7}\)

14 tháng 5 2018

3/2x5 + 3/5x8 + 3/8x11 + 3/11x14 

= 3/2 - 3/5 + 3/5 - 3/8 + 3/8 - 3/11 + 3/11 - 3/14 

= 3/2 - 3/14 

= 21/14 - 3/14 

= 18/14 

= 9/5 

26 tháng 2 2017

Ta có : \(S=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}\)

\(\Rightarrow3S=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}\)

\(\Rightarrow3S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\)

\(\Rightarrow3S=\frac{1}{2}-\frac{1}{14}=\frac{3}{7}\)

\(\Rightarrow S=\frac{3}{7}.\frac{1}{3}=\frac{1}{7}\)

26 tháng 2 2017

3S= 1/2 - 1/5 + 1/5 - 1/8 + ... + 1/11 - 1/14

3S= 1/2 - 1/14

S= 3/7 / 3

S= 1/7
 

4 tháng 11 2018

dễ quá bạn ơi,kiến thức cơ bản

\(\frac{3}{2\times5}+\frac{3}{5\times8}+\frac{3}{8\times11}+\frac{3}{11\times14}\)

\(=\frac{5-2}{2\times5}+\frac{8-5}{5\times8}+\frac{11-8}{8\times11}+\frac{14-11}{11\times14}\)

\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\)

\(=\frac{1}{2}-\frac{1}{14}=\frac{7}{14}-\frac{1}{14}=\frac{6}{14}=\frac{3}{7}\)

DD
28 tháng 9 2021

a) \(\frac{3}{4\times9}+\frac{3}{9\times14}+...+\frac{3}{54\times59}+\frac{3}{59\times64}\)

\(=\frac{3}{5}\times\left(\frac{5}{4\times9}+\frac{5}{9\times14}+...+\frac{5}{59\times64}\right)\)

\(=\frac{3}{5}\times\left(\frac{9-4}{4\times9}+\frac{14-9}{9\times14}+...+\frac{64-59}{59\times64}\right)\)

\(=\frac{3}{5}\times\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{59}-\frac{1}{64}\right)\)

\(=\frac{3}{5}\times\left(\frac{1}{4}-\frac{1}{64}\right)\)

\(=\frac{9}{64}\)

b) \(\frac{2}{8\times11}+\frac{2}{11\times14}+...+\frac{2}{23\times26}+\frac{2}{26\times29}\)

\(=\frac{2}{3}\times\left(\frac{3}{8\times11}+\frac{3}{11\times14}+...+\frac{3}{26\times29}\right)\)

\(=\frac{2}{3}\times\left(\frac{11-8}{8\times11}+\frac{14-11}{11\times14}+...+\frac{29-26}{26\times29}\right)\)

\(=\frac{2}{3}\times\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{26}-\frac{1}{29}\right)\)

\(=\frac{2}{3}\times\left(\frac{1}{8}-\frac{1}{29}\right)\)

\(=\frac{7}{116}\)

\(A=\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+...+\dfrac{3}{100\cdot103}\)

\(=\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{100}-\dfrac{1}{103}\)

\(=\dfrac{98}{515}\)