Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E = 1/2*5 + 1/5*8 + 1/8*11 + ....... + 1/29*32
E = 1/2 - 1/5 +1/5 - 1/8 + 1/8 - 1/11 + ........+1/29 - 1/32
E = 1/2 - 1/32
E = 15/32
nếu đúng thì k mik với nha
\(\frac{3}{10}\)+\(\frac{3}{40}\)+\(\frac{3}{88}\)+\(\frac{3}{154}\)
=\(\frac{3}{2.5}\)+\(\frac{3}{5.8}\)+\(\frac{3}{8.11}\)+\(\frac{3}{11.14}\)
Đến đây bạn tự suy luận tiếp nhé,mình không viết vào vì nó không cần thiết,phân tích xong nó sẽ như thế này:
=\(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\)
Loại bỏ những phân số đối nhau ta còn:
=\(\frac{1}{2}-\frac{1}{14}\)
=\(\frac{7}{14}-\frac{1}{14}\)
=\(\frac{3}{7}\)
Chúc bạn học tốt^^
a)\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=\left(1-\frac{1}{6}\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+...+\left(\frac{1}{5}-\frac{1}{5}\right)\)
\(=\left(1-\frac{1}{6}\right)+0+...+0=1-\frac{1}{6}=\frac{6}{6}-\frac{1}{6}=\frac{5}{6}\)
b)\(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\)
\(=\left(\frac{1}{2}-\frac{1}{14}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{8}-\frac{1}{8}\right)+\left(\frac{1}{11}-\frac{1}{11}\right)\)
\(=\left(\frac{1}{2}-\frac{1}{14}\right)+0+...+0=\frac{1}{2}-\frac{1}{14}=\frac{7}{14}-\frac{1}{14}=\frac{6}{14}\)
Nhớ **** cho mình nhé bạn! chúc bạn học tốt
Đặt A=1/10+1/40+1/88+1/154+1/238+1/340
A=1/2.5+1/5.8+1/8.11+1/11.14+1/14.17+1/17.20
3A=3/2.5+3/5.8+....+3/17.20
3A=1/2-1/5+1/5-1/8+...+1/17-1/20
3A=1/2-1/20
3A=9/20
2)
Giữ nguyên p/s 1/2^2
Ta có:1/3^2<1/2.3
1/4^2<1/3.4
...............
1/n^2<1/(n-1).n
=>1/3^2+1/4^2+...+1/n^2<1/2.3+1/3.4+...+1/(n-1).n
=>1/3^2+1/4^2+.....+1/n^2<1/2-1/3+1/3-1/4+.........+1/n-1-1/n
=>1/2^2+1/3^2+.....+1/n^2<1/2^2+1/2-1/n
=>1/2^2+1/3^2+....+1/n^2<3/4-1/n<3/4
3)
2B=2/3.5+2/5.7+....+2/47.49+2/49.51
2B=1/3-1/5+1/5-1/7+.....+1/47-1/49+1/49-1/51
2B=1/3-1/51
2B=16/51
B=16/51:2
B=8/51
A=1+1/2+1/2^2+...+1/2^2010
2A=2+1+1/2+....+1/2^2009
2A-A=(2+1+1/2+...+1/2^2009)-(1+1/2+1/2^2+....+1/2^2010)
A=2-1/2^2010
b = 3/2.5+3/5.8+3/8.11+.....+3/17.20
= 1/2.5+1/5.8+.......+1/17.20
= 1/2-1/5+1/5-1/8+......+1/17-1/20
= 1/2- 1/20
= 9/20
\(A=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\)
\(3A=3.\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\right)\)
\(3A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\)
\(3A=\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+\frac{14-11}{11.14}+\frac{17-14}{14.17}+\frac{20-17}{17.20}\)
\(3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)
\(3A=\frac{1}{2}-\frac{1}{20}\)
\(A=\left(\frac{1}{2}-\frac{1}{20}\right)\div3=\frac{9}{20}\div3=\frac{9}{20.3}=\frac{3}{20}\)
Vậy ................
\(B=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot....\cdot\frac{9999}{10000}\)
\(B=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot...\cdot\frac{99.101}{100.100}\)
\(B=\frac{\left(1\cdot2\cdot3\cdot...\cdot99\right).\left(3\cdot4\cdot5\cdot...\cdot101\right)}{\left(2\cdot3\cdot4\cdot...\cdot100\right).\left(2\cdot3\cdot4\cdot...\cdot100\right)}\)
\(B=\frac{1\cdot2\cdot3\cdot..\cdot99}{2\cdot3\cdot4\cdot..\cdot100}\cdot\frac{3\cdot4\cdot5\cdot...\cdot101}{2\cdot3\cdot4\cdot...\cdot100}\)
\(B=\frac{1}{100}\cdot\frac{101}{2}=\frac{101}{200}\)
vậy......
A=1/2.5+1/5.8+1/8.11+1/11.14+1/14.17+1/17.20
A=1/3.(3/2.5+3/5.8+3/8.11+3/11.14+3/14.17+3/17.20)
A=1/3.(1/2-1/20)
=3/20
B=1.3/2.2+2.4/3.3+3.5/4.4+...+99.101/100.100
B=(1.2.3...99).(3.4.5...101)/(2.3.4...100).(2.3.4...100)
B=\(\frac{1.2....99}{2.3...100}\).\(\frac{3.4...101}{2.3...100}\)
B=1/100.101/2=101/200
\(=\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{29\cdot32}\)
\(=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{29}-\dfrac{1}{32}\)
=1/2-1/32=15/32