Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\left(x-1\right)^2-4\left(3+x^2\right)+2x\left(x-5\right)\)
\(2.x^2-2.x.1+1^2-12-4x^2+2x^2-10x\)
\(2x^2-2x+1-12-4x^2+2x^2-10x\)
\(-12x-11\)
Ta có:
\(101^{^{ }3}\) = \(\text{(100+1)^3}\) : \(99^3\)= \(\text{(100-1)^3}\)
\(101^3-99^3+1\)
\(=\left(101-99\right)\left(101^2+101.99+99^2\right)+1\)
\(=2.\left[\left(101+99\right)^2-101.99\right]+1\)
\(=2.\left[40000-9999\right]+1\)
\(=2.30001+1=60003\)
Mình nghĩ cách này là thuận tiện nhất rồi. Chúc bạn học tốt.
Câu 1:
Nhân từng hạng tử của đa thức/đơn thức này cho từng hạng tử của đa thức/đơn thức kia. Sau đó, thu gọn lại ta được kết quả cần tìm
Câu 2:
Có 7 hằng đẳng thức. Công thức:
1: \(\left(a+b\right)^2=a^2+2ab+b^2\)
2: \(\left(a-b\right)^2=a^2-2ab+b^2\)
3: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
4: \(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)
5: \(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)
6: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
7: \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
Ok :))
(a+b)6 = a6 + 6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6= a^6+b^6+6(a^5b+ab^5)+15(a^4b^2+a^2b^4)+20a^3b^3
(a-b)5=a^5-5a^4b+10a^3b^2-10a^2b^3+5ab^4-b^5
RỒI TỰ CUYỂN NHA!!
a-b=7
(a-b)2=a2+b2-2ab=49
a2+b2+4ab-2ab=49+32=81
(a+b)2=81
a+b=9 hoặc a+b=(-9)
Trả lời
2002 x 1006
= ( 1504 + 498 ) x ( 1504 - 498 )
= 15042 - 4982
= 2014012
198 x 202
= ( 200 - 2 ) x ( 200 + 2 )
= 2022 - 22
= 40800