Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left[\left(25-1\right):1+1\right]\left(25+1\right)}{2}=325.\)
\(B=\frac{\left[\left(51-3\right):2+1\right]\left(51+3\right)}{2}=675\)
\(C=\frac{\left[\left(81-1\right):4+1\right]\left(81+1\right)}{2}=861\)
C1:
A = \(3\frac{5}{7}+4\frac{2}{3}\)\(-\left(2\frac{5}{7}+2\frac{1}{3}\right)\)
A = \(3\frac{5}{7}+4\frac{2}{3}\)\(-2\frac{5}{7}-2\frac{1}{3}\)
A = \(3\frac{5}{7}-2\frac{5}{7}+4\frac{2}{3}-2\frac{1}{3}\)
A = \(1+2\frac{1}{3}\)
A = \(1+\frac{7}{3}\)
A = \(\frac{10}{3}\)
C2:
A = \(3\frac{5}{7}+4\frac{2}{3}\)\(-\left(2\frac{5}{7}+2\frac{1}{3}\right)\)
A = \(\frac{26}{7}+\frac{14}{3}-\frac{19}{7}-\frac{7}{3}\)
A = \(1+\frac{14}{3}-\frac{7}{3}=\frac{10}{3}\)
C1: Ta có: \(B=8\frac{1}{9}-3\frac{2}{7}+6\frac{8}{7}-3\frac{5}{7}\)
\(=8+\frac{1}{9}-\left(3+\frac{2}{7}\right)+6+\frac{8}{7}-\left(3+\frac{5}{7}\right)\)
\(=8+\frac{1}{9}-3-\frac{2}{7}+6+1+\frac{1}{7}-3-\frac{5}{7}\)
= \(\left(8-3+6+1-3\right)+\left(\frac{1}{9}-\frac{2}{7}+\frac{1}{7}-\frac{5}{7}\right)\)
\(=9+\left(\frac{-47}{63}\right)\)
\(=\frac{520}{63}\)
C2: Đổi hỗn số ra phân số rồi tính ( cj nghĩ thế )
\(A=47.36+64.47+15\)
\(A=47.\left(36+64\right)+15\)
\(A=47.100+15\)
\(A=4700+15\)
\(A=4715\)
\(B=27+35+65+73+75\)
\(B=\left(27+73\right)+\left(35+65\right)+75\)
\(B=100+100+75\)
\(B=275\)
\(C=37+37.15+84.37\)
\(C=37.\left(1+15+84\right)\)
\(C=37.100\)
\(C=3700\)
\(D=\frac{1}{20.21}+\frac{1}{21.22}+\frac{1}{22.23}+\frac{1}{23.24}\)
\(D=\frac{1}{20}-\frac{1}{21}+\frac{1}{21}-\frac{1}{22}+\frac{1}{22}-\frac{1}{23}+\frac{1}{23}-\frac{1}{24}\)
\(D=\frac{1}{20}-\frac{1}{24}\)
\(D=\frac{24}{480}-\frac{20}{480}\)
\(D=\frac{4}{480}=\frac{1}{120}\)
\(E=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(E=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(E=1-\frac{1}{50}\)
\(E=\frac{49}{50}\)
a ) 13/20
B)
C..........................................................
minh dang tính
A=\(\frac{1}{3}-\frac{3}{4}-\left(\frac{-3}{5}\right)+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
=\(\frac{1}{3}-\frac{3}{4}+\frac{3}{5}+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
=\(\left(\frac{1}{3}+\frac{3}{5}+\frac{1}{15}\right)-\left(\frac{3}{4}+\frac{2}{9}+\frac{1}{36}\right)+\frac{1}{72}\)
=\(\left(\frac{14}{15}+\frac{1}{15}\right)-\left(\frac{35}{36}+\frac{1}{36}\right)+\frac{1}{72}\)
=1 - 1 + \(\frac{1}{72}\)= 0 + \(\frac{1}{72}\)= \(\frac{1}{72}\)
\(\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+...+\frac{1}{9}.\frac{1}{10}\)
\(=\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(=\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}+\frac{1}{2}-\frac{1}{10}\)
\(=\frac{9}{10}\)
\(=\frac{1}{3}+\frac{1}{15}+\frac{3}{5}-\left(\frac{3}{4}+\frac{2}{9}+\frac{1}{36}\right)+\frac{1}{64}=\frac{5+1+9}{15}-\frac{27+8+1}{36}+\frac{1}{64}.\)
\(=\frac{1}{64}\)
=1/64