Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{2}+\frac{5}{14}+\frac{2}{63}+\frac{3}{108}+\frac{1}{156}\)
\(=\frac{1}{1.2}+\frac{5}{2.7}+\frac{2}{7.9}+\frac{3}{9.12}+\frac{1}{12.13}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}\)
\(=1-\frac{1}{13}=\frac{12}{13}\)
\(\frac{1}{2}+\frac{5}{14}+\frac{2}{63}+\frac{3}{108}+\frac{1}{156}\)\(=\frac{12}{13}\)
TL:
\(\frac{1}{2}+\frac{5}{14}+\frac{2}{63}+\frac{3}{108}+\frac{1}{156}\)
\(=\frac{12}{13}\)
A = \(\dfrac{2}{3}\) + \(\dfrac{3}{18}\) + \(\dfrac{1}{42}\) + \(\dfrac{2}{63}\) + \(\dfrac{3}{108}\)
A = \(\dfrac{2}{1\times3}\) + \(\dfrac{3}{3\times6}\) + \(\dfrac{1}{6\times7}\)+ \(\dfrac{2}{7\times9}\) + \(\dfrac{3}{9\times12}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{9}\) + \(\dfrac{1}{9}\) - \(\dfrac{1}{12}\)
A = 1 - \(\dfrac{1}{12}\)
A = \(\dfrac{11}{12}\)
A = \(\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+\frac{98}{99}\)
A = ( 1 - 1/3 ) + ( 1 - 1/15 ) + ( 1 - 1/35 ) + ( 1 - 1/63 ) + ( 1 - 1/99 )
A = ( 1 + 1 + 1 + 1 + 1 ) - ( 1/3 + 1/15 + 1/35 + 1/63 + 1/99 )
A = 5 - \(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)\)
A = 5 - ( 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 )
A = 5 - ( 1 - 1/11 )
A = 5 - 10/11
A = 45/11
Dấu \(.\)là dấu nhân
\(A=\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+\frac{98}{99}\)
\(\Rightarrow A=\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{15}\right)+\left(1-\frac{1}{35}\right)+\left(1-\frac{1}{63}\right)+\left(1-\frac{1}{99}\right)\)
\(\Rightarrow A=\left(1+1+1+1+1\right)-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)\)
\(\Rightarrow A=5-\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)\)
\(\Rightarrow A=5-\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)
\(\Rightarrow A=5-\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(\Rightarrow A=5-\frac{1}{2}.\left(1-\frac{1}{11}\right)\)
\(\Rightarrow A=5-\frac{1}{2}.\frac{10}{11}\)
\(\Rightarrow A=5-\frac{5}{11}\)
\(\Rightarrow A=\frac{55}{11}-\frac{5}{11}\)
\(\Rightarrow A=\frac{50}{11}\)
~ Ủng hộ nhé
+ \(\frac{1}{n\times\left(n+2\right)}=\frac{\left(n+2\right)-n}{n\times\left(n+2\right)}\)
\(=\frac{n+2}{n\times\left(n+2\right)}-\frac{n}{n\times\left(n+2\right)}=\frac{1}{n}-\frac{1}{n+2}\)
+ \(\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+\frac{98}{99}\)
\(=1-\frac{1}{3}+1-\frac{1}{15}+1-\frac{1}{35}+1-\frac{1}{63}+1-\frac{1}{99}\)
\(=5-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)\)
\(=5-\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}\right)\)
\(=5-\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)\)
\(=5-\frac{1}{2}\times\left(1-\frac{1}{11}\right)\)
\(=5-\frac{1}{2}+\frac{1}{22}=\frac{50}{11}\)
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
Mình chỉnh lại đề B nha:
\(B=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}\)
\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\frac{100}{101}=\frac{50}{101}\)
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
a. (45-63+18) x (1+2+3+4+5+6+7+8+9)
= 0 x (1+2+3+4+5+6+7+8+9) = 0
b. 60-61+62-63+64-65+66-67+68-69+70
= 60 + (-61-69)+(62+68)+(-63-67)+(64+66)-65+70
= 60 + (-130)+130+(-130)+130-65-70
= 60 + (-130+130) + (-130+130)-65+70
= 60 - 65 + 70 = 65