K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2021

N=1/2+1/22+...+1/210

2N=1+1/2+...+1/29

2N-N=1-1/210=1-1/1024=1023/1024

Giải:

N=1/2+1/22+1/23+...+1/29+1/210

2N=1+1/2+1/22+...+1/28+1/29

2N-N=(1+1/2+1/22+...+1/28+1/29)-(1/2+1/22+1/23+...+1/29+1/210)

N=1-1/210=1023/1024

Chúc bạn học tốt!

28 tháng 4 2023

Đây nha bạn:

=7−55.7+12−77.12+19−1212.19+28−1919.28+39−2828.39+40−3939.40

=15−17+17−112+112−119+119−128+128−139+139−140

=15−140=740

5 tháng 7 2023

 

Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}\)

\(< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)

\(B=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}=\dfrac{99}{100}\) \(\Rightarrow A< \dfrac{99}{100}\)

\(1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-...-\dfrac{1}{100^2}=1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\right)=1-A>\dfrac{1}{100}\)

 

 

16 tháng 2 2022

\(B=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)

=>\(B=\dfrac{32}{64}+\dfrac{16}{64}+\dfrac{6}{64}+\dfrac{2}{64}+\dfrac{1}{64}\)

=>\(B=\dfrac{32+16+6+2+1}{64}\)

=>\(B=\dfrac{63}{64}\)

16 tháng 2 2022

\(\dfrac{63}{64}\)

AH
Akai Haruma
Giáo viên
27 tháng 4 2023

Lời giải:
Xét tử số:
$X=1+2+2^2+2^3+...+2^{2008}$

$2X=2+2^2+2^3+2^4+....+2^{2009}$

$\Rightarrow 2X-X=(2+2^2+2^3+2^4+....+2^{2009})-(1+2+2^2+...+2^{2008})$

$\Rightarrow X=2^{2009}-1$

$\Rightarrow S=\frac{X}{1-2^{2009}}=\frac{2^{2009}-1}{-(2^{2009}-1)}=-1$

x=2/45+1/9
x=7/45

13 tháng 2 2022

Mình tưởng -\(\frac{2}{45}\)

17 tháng 2 2022

Cảm ơn bạn nhiều ạ<3

 

AH
Akai Haruma
Giáo viên
22 tháng 4 2023

Lời giải:
$S=\frac{1}{7^2}+\frac{2}{7^3}+\frac{3}{7^4}+...+\frac{69}{7^{70}}$

$7S=\frac{1}{7}+\frac{2}{7^2}+\frac{3}{7^3}+...+\frac{69}{7^{69}}$

$6S=7S-S=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+....+\frac{1}{7^{69}}-\frac{69}{7^{70}}$

$42S=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{68}}-\frac{69}{7^{69}}$

$\Rightarrow 42S-6S=(1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{68}}-\frac{69}{7^{69}})-(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+....+\frac{1}{7^{69}}-\frac{69}{7^{70}})$

$\Rightarrow 36S=1-\frac{69}{7^{69}}-\frac{1}{7^{69}}+\frac{69}{7^{70}}$

Hay $36S=1-\frac{69.7-7-69}{7^{70}}=1-\frac{407}{7^{70}}$

$\Rightarrow S=\frac{1}{36}(1-\frac{407}{7^{70}})$