K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 5 2019

\(=lim\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n-1}-\frac{1}{2n+1}\right)\)

\(=lim\frac{1}{2}\left(1-\frac{1}{2n+1}\right)=\frac{1}{2}.\left(1-0\right)=\frac{1}{2}\)

24 tháng 4 2020

a) lim \(\frac{\left(2n^2-3n+5\right)\left(2n+1\right)}{\left(4-3n\right)\left(2n^2+n+1\right)}\)

= lim \(\frac{\left(2-\frac{3}{n}+\frac{5}{n^2}\right)\left(2+\frac{1}{n}\right)}{\left(\frac{4}{n}-3\right)\left(2+\frac{1}{n}+\frac{1}{n^2}\right)}=\frac{4}{-6}=-\frac{2}{3}\)

b)lim ( \(\frac{\sqrt{n^4+1}}{n}-\frac{\sqrt{4n^6+2}}{n^2}\))

= lim ( \(\frac{n\sqrt{n^4+1}-\sqrt{4n^6+2}}{n^2}\) )

= lim \(\frac{\left(n^6+n^2\right)-\left(4n^6+2\right)}{n^2\left(n\sqrt{n^4+1}+\sqrt{4n^2+2}\right)}\)

= lim \(\frac{-3n^6+n^2+2}{n^3\sqrt{n^4+1}+n^2\sqrt{4n^2+2}}\)

= lim \(\frac{-3n\left(1-\frac{1}{n^4}-\frac{2}{n^6}\right)}{\sqrt{1+\frac{1}{n^4}}+\frac{1}{n^2}\sqrt{4+\frac{2}{n^2}}}\)

= lim \(-3n=-\infty\)

c) lim \(\frac{2n+3}{\sqrt{9n^2+3}-\sqrt[3]{2n^2-8n^3}}\)

= lim\(\frac{2+\frac{3}{n}}{\sqrt{9+\frac{3}{n^2}}-\sqrt[3]{\frac{2}{n}-8}}=\frac{2}{3+2}=\frac{2}{5}\)

23 tháng 3 2016

a) Cả tử số và mẫu số của \(\frac{7n^2-3n+12}{n^2+2n+2}\) đều dẫn đến \(\infty\) nên không thể trả lời ngay biểu thức đó  tiến đến giới hạn nào (dạng vô định \(\left(\frac{\infty}{\infty}\right)\)). Tuy nhiên sau khi chia cả tử số và mẫu số cho \(n^2\) :

\(\frac{7n^2-3n+12}{n^2+2n+2}=\frac{7-\frac{3}{n}+\frac{12}{n^2}}{1+\frac{2}{n}+\frac{2}{n^2}}\)

Ta thấy ngay tử số gần đến 7 và mẫu số gần đến 1 (vì \(\lim\limits\frac{1}{n^p}=0,p\ge1\)

Điều đó cho phép ta áp dụng công thức và thu được kết quả \(\lim\limits\frac{7n^2-3n+12}{n^2+2n+2}=\lim\limits\frac{7-\frac{3}{n}+\frac{12}{n^2}}{1+\frac{2}{n}+\frac{2}{n^2}}=7\)

23 tháng 3 2016

b) Áp dụng công thức "Nếu tồn tại \(\lim\limits a^n,k\in\)N* thì tồn tại \(\lim\limits\left(a_n\right)^k=\left(\lim\limits a_n\right)^k\)"

ta có : 

\(\lim\limits a_n=\left[\lim\limits\left(\frac{3n^2+n-2}{4n^2+2n+7}\right)\right]^3\)

Mặt khác do \(\lim\limits\frac{3n^2+n-2}{4n^2+2n+7}=\lim\limits\frac{3+\frac{1}{n}-\frac{2}{n^2}}{4+\frac{2}{n}+\frac{7}{n^2}}=\frac{3}{4}\)

nên \(\lim\limits a_n=\left(\frac{3}{4}\right)^3=\frac{27}{64}\)

 

NV
28 tháng 4 2019

a/ Không phải dạng vô định thì cứ thay trực tiếp vào thôi

\(\lim\limits_{x\rightarrow2}\left(\frac{\sqrt{x^2+60}-2x^2}{x^2-1}\right)=\frac{\sqrt{2^2+60}-2.2^2}{2^2-1}=0\)

b/ Bạn có viết nhầm mẫu số ko? Đề bài thế này hoàn toàn ko chặt chẽ

Số hạng tổng quát \(\frac{1}{4n^2}\) đâu có đúng với 2 số hạng đầu trong dãy?

Dù sao thì, nếu tử số và mẫu số có cùng số số hạng là \(2n\) thì vẫn tính được dựa vào giới hạn kẹp

\(1+2+3+...+2n=\frac{2n\left(n+1\right)}{2}\)

\(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{4n^2}< 1+1+1+...+1=2n\)

\(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2n^2}>\frac{1}{2n^2}+\frac{1}{2n^2}+\frac{1}{2n^2}+...+\frac{1}{2n^2}=2n.\frac{1}{2n^2}=\frac{1}{n}\)

\(\Rightarrow lim\left(\frac{2n\left(2n+1\right)}{2.2n}\right)< lim\left(\frac{1+2+3+...+2n}{1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{4n^2}}\right)< lim\left(\frac{2n\left(2n+1\right)}{\frac{1}{n}}\right)\)

\(lim\left(\frac{2n\left(2n+1\right)}{2.2n}\right)=lim\left(n+\frac{1}{2}\right)=+\infty\)

\(lim\left(\frac{2n\left(2n+1\right)}{\frac{1}{n}}\right)=lim\left(2n^2\left(2n+1\right)\right)=+\infty\)

\(\Rightarrow lim\left(\frac{1+2+3+...+2n}{1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{4n^2}}\right)=+\infty\)

29 tháng 4 2019

Em cảm ơn ạ.

23 tháng 3 2016

Khi \(n\rightarrow\infty\) ta có \(\frac{n^3}{n^2+3}=\frac{1}{\frac{1}{n}+\frac{3}{n^2}}\rightarrow\infty;\) \(\frac{2n^2}{2n+1}=\frac{2}{\frac{2}{n}+\frac{1}{n^2}}\rightarrow\infty\) và như vậy ở đây ta gặp vô định dạng \(\left(\infty-\infty\right)\). Do vậy để tính giới hạn ta cần biến đổi sơ bộ như sau

\(a_n=\frac{n^3-6n^2}{\left(n^2+3\right)\left(2n+1\right)}=\frac{1-\frac{6}{n}}{\left(1+\frac{3}{n^2}\right)\left(2+\frac{1}{n}\right)}\) \(\Rightarrow\lim\limits a_n=\frac{1}{1.2}=\frac{1}{2}\)