K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

\(\left[x-34\right]^{335}+\left|y-12\right|^{34}=0\)

Để GTBT bằng 0 thì :

\(\left\{\begin{matrix}x-34=0\\y-12=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=34\\y=12\end{matrix}\right.\)

Vậy \(x=34;y=12\) thì GTBT bằng 0.

12 tháng 2 2017

phải là |x - 34|335 chứ!

30 tháng 6 2017

\(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)+\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

\(\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

\(\frac{1}{x+3}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

\(\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

\(\frac{31}{\left(x+3\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

\(\Rightarrow x=31\)

16 tháng 8 2020

\(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

\(\Leftrightarrow\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

\(\Leftrightarrow\frac{1}{x+3}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

\(\Leftrightarrow\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

\(\Leftrightarrow x+34-x-3=x\)

\(\Leftrightarrow x=31\)

16 tháng 8 2020

\(ĐKXĐ\)\(x\ne-3\)\(x\ne-10\)\(x\ne-21\)\(x\ne-34\)

\(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

\(\Leftrightarrow\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

\(\Leftrightarrow\frac{1}{x+3}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

\(\Leftrightarrow\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

\(\Rightarrow\left(x+34\right)-\left(x+3\right)=x\)

\(\Leftrightarrow x+34-x-3=x\)

\(\Leftrightarrow x=31\)( thỏa mãn )

Vậy \(x=31\)

10 tháng 2 2017

Vì \(\left|x-34\right|^{335}\ge0;\left|y-12\right|^{34}\ge0\)

\(\Rightarrow\left|x-34\right|^{335}+\left|y-12\right|^{34}\ge0\)

Dấu "=" xảy ra <=> \(\orbr{\begin{cases}\left|x-34\right|^{335}=0\\\left|y-12\right|^{34}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=34\\y=12\end{cases}}}\)

15 tháng 6 2016

a) Dễ thấy VT > 0;mà VT=VP

=>VP > 0 => 4x > 0=> x > 0

=>\(\left|x+\frac{1}{2}\right|=x+\frac{1}{2};\left|x+\frac{1}{3}\right|=x+\frac{1}{3};\left|x+\frac{1}{6}\right|=x+\frac{1}{6}\)

=>BT đầu tương đương \(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{3}\right)+\left(x+\frac{1}{6}\right)=4x\)

\(=>3x+1=4x=>x=1\)

15 tháng 6 2016

a)  Để đẳng thức xảy ra thì: x>0 (vì: \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{6}\right|>0\) )

Khi đó: \(\left|x+\frac{1}{2}\right|=x+\frac{1}{2};\left|x+\frac{1}{3}\right|=x+\frac{1}{3};\left|x+\frac{1}{6}\right|=x+\frac{1}{6}\)

=>\(x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{6}=4x\)

<=>x=1

Vậy x=1

b)Điều kiện: \(x\ne-3;-10;-21;-34\)

\(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

<=>\(\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

<=>\(\frac{1}{x+3}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

=>x+34-x-3=x

<=>x=31 (nhận)

Vậy x=31

20 tháng 9 2020

A) \(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}\)

\(=\frac{\left(x+10\right)-\left(x+3\right)}{\left(x+3\right)\left(x+10\right)}+\frac{\left(x+21\right)-\left(x+10\right)}{\left(x+10\right)\left(x+21\right)}+\frac{\left(x+34\right)-\left(x+21\right)}{\left(x+21\right)\left(x+34\right)}\)

\(=\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}\)

\(=\frac{1}{x+3}-\frac{1}{x+34}\)

\(=\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}\)\(=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

\(\Rightarrow\left(x+34\right)-\left(x+3\right)=x\)

\(\Rightarrow x=31\)

Vậy, x = 31 

20 tháng 9 2020

Bạn áp dụng: \(\frac{k}{x\cdot\left(x+k\right)}=\frac{1}{x}-\frac{1}{x+k}\) với    \(x,k\inℝ;x\ne0;x\ne-k\)

Chứng minh: \(\frac{1}{x}-\frac{1}{x+k}=\frac{x+k}{x\left(x+k\right)}-\frac{x}{x\left(x+k\right)}=\frac{x+k-x}{x\left(x+k\right)}=\frac{k}{x\left(x+k\right)}\)

20 tháng 3 2022

Nghiệm của đa thức \(f\left(x\right)\)là số a sao cho khi \(x=a\)thì \(f\left(a\right)=0\)hay \(a^2+10a-56=0\)hay \(a^2+14a-4a-46=0\)hay \(a\left(a+14\right)-4\left(a+14\right)=0\)hay \(\left(a+14\right)\left(a-4\right)=0\)hay \(\orbr{\begin{cases}a+14=0\\a-4=0\end{cases}}\)hay \(\orbr{\begin{cases}a=-14\\a=4\end{cases}}\)

Vậy nghiệm của đa thức \(f\left(x\right)\)là -14 và 4

+) Nghiệm của đa thức A là số a sao cho khi \(x=a\)thì \(A=0\)hay \(\left(a^2-4\right)\left(a^3+27\right)=0\)hay \(\orbr{\begin{cases}a^2-4=0\\a^3+27=0\end{cases}}\)hay \(\orbr{\begin{cases}a^2=4\\a^3=-27\end{cases}}\)hay \(\orbr{\begin{cases}a=\pm2\\a=-3\end{cases}}\)

Vậy nghiệm của đa thức A là -3; -2 và 2

20 tháng 3 2022

`Answer:`

1. 

`f(x)=x^2+10x-56`

`f(x)=0`

`<=>x^2+10x-56=0`

`<=>x^2+14x-4x-56=0`

`<=>x(x+14)-4(x+14)=0`

`<=>(x+14)(x-4)=0`

\(\Leftrightarrow\orbr{\begin{cases}x+14=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-14\\x=4\end{cases}}}\)

2. 

Để đa thức `A` có nghiệm

`=>(x^2-4)(x^3+27)=0`

\(\Leftrightarrow\orbr{\begin{cases}x^2-4=0\\x^3+27=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^3=-27\end{cases}}\Leftrightarrow\Leftrightarrow\orbr{\begin{cases}x^2=\left(\pm2\right)^2\\x^3=\left(-3\right)^3\end{cases}}}\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=-3\end{cases}}\)

1 tháng 9 2019

a, \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{13}{90}\)

\(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{13}{90}\)

\(\frac{1}{5}-\frac{1}{x+1}=\frac{13}{90}\)

\(\frac{1}{x+1}=\frac{1}{5}-\frac{13}{90}\)

\(\frac{1}{x+1}=\frac{18}{90}-\frac{13}{90}\)

\(\frac{1}{x+1}=\frac{1}{18}\)

⇒ x + 1 = 18

⇒ x = 17

Vậy x = 17

b, \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{49}{148}\)

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{49.3}{148}\)

\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{147}{148}\)

\(1-\frac{1}{x+3}=\frac{147}{148}\)

\(\frac{1}{x+3}=1-\frac{147}{148}\)

\(\frac{1}{x+3}=\frac{1}{148}\)

⇒ x + 3 = 148

⇒ x = 145

Vậy x = 145