K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2019

A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

A=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

A=\(1-\frac{1}{50}\)

A=\(\frac{49}{50}\)

27 tháng 4 2017

Ta có công thức \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)

Dựa vào công thức trên, ta có

\(\frac{1}{1.2}=\frac{1}{2-1}.\left(1-\frac{1}{2}\right)\)

\(\frac{1}{2.3}=\frac{1}{3-2}.\left(\frac{1}{2}-\frac{1}{3}\right)\)

............................................

\(\frac{1}{49.50}=\frac{1}{50-49}.\left(\frac{1}{49}-\frac{1}{50}\right)\)

\(A=1.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\right)\)

\(\Rightarrow A=1-\frac{1}{50}=\frac{49}{50}\)

chắc chắn bạn ạ, ai thấy đúng hì ủng hộ nha

27 tháng 4 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{50}=\frac{49}{50}\)\(\frac{49}{50}\)

15 tháng 4 2018

Ta có : 

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}\)

\(A=\frac{49}{50}\)

Vậy \(A=\frac{49}{50}\)

Chúc bạn học tốt ~ 

15 tháng 4 2018

= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50

= 1/1 - 1/50

= 49/50
 

a: \(A=\dfrac{5}{7}-\dfrac{2}{7}+\dfrac{8}{11}+\dfrac{3}{11}+\dfrac{1}{2}=\dfrac{3}{7}+\dfrac{1}{2}+1=\dfrac{6+7+14}{14}=\dfrac{27}{14}\)

b: \(B=\dfrac{11}{17}+\dfrac{6}{17}-\dfrac{8}{19}-\dfrac{30}{19}+\dfrac{-3}{4}=1-2-\dfrac{3}{4}=-1-\dfrac{3}{4}=-\dfrac{7}{4}\)

c: \(C=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}=\dfrac{49}{50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}\)

\(=\frac{49}{50}\)

6 tháng 4 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{49.50}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{49}-\frac{1}{50}\)

\(=\frac{1}{1}-\frac{1}{50}\)

\(\frac{50}{50}-\frac{1}{50}=\frac{49}{50}\)

Vì \(\frac{49}{50}<1\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}<1\)

6 tháng 10 2016

phân tích : 

= 2 + 6 + 12 + 20 + 30 ... + 2450

quy luật : 2 số liền nhau hơn kém nhau là các số chẵn liên tiếp :
   6 - 2 = 4 ; 12 - 6 = 6 ; 20 - 12 = 8

và bây giờ dùng tính chất dãy số để tính 

nhé !

6 tháng 10 2016

A×3=1.2.3+2.3.3+3.4.3+.......+49.50.3

A×3=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+.......+49.50.(51-48)

A×3=1.2.3-1.2.0+2.3.4-2.3.1+........+49.50.51-49.50.48

Ta thấy ngoài số 49.50.51 thì các số còn lại đều bị giản ước như 1.2.3 với 2.3.1;....nên 

A×3=49.50.51

A×3=124950

A=124950:3

A=41650.

Vậy A=41650.

25 tháng 10 2021

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2009}-\dfrac{1}{2010}\\ =1-\dfrac{1}{2010}=\dfrac{2009}{2010}\)

12 tháng 8 2016

Đặt A , ta có :

\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{999\times1000}+1\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}+1\)

\(A=2-\frac{1}{1000}\)

\(A=\frac{2000}{1000}-\frac{1}{1000}\)

\(A=\frac{1999}{1000}\)

12 tháng 8 2016

Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}+1=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}+1\)

\(A=1-\frac{1}{1000}+1=\frac{999}{1000}+1=\frac{1999}{1000}\)

Vậy \(A=\frac{1999}{1000}\)

22 tháng 4 2016

Giải:

Ta có:  1/1x2+1/2x3+1/3x4+...+1/999x1000+1

= 1 - 1/2 + 1/2-1/3  + 1/3-1/4 + ...+ 1/999 - 1/1000 + 1

= 1 - 1/1000 + 1

= 2 - 1/1000

= 1999/1000

Ai tích mk mk sẽ tích lại 

Ko đc Coppy

CHỉ đc viết thui nha mk cho 1 tích  

22 tháng 4 2016

1999 / 1000 nha Hoàng Tử Ban Mai

18 tháng 7 2016

c) 

\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{19.21}\)

   \(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)\)

   \(=\frac{1}{2}.\left(1-\frac{1}{21}\right)\)

   \(=\frac{1}{2}.\frac{20}{21}\)

   \(=\frac{10}{21}\)

18 tháng 7 2016

\(A\)\(\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{49.50}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}=\)\(\frac{1}{3}-\frac{1}{50}=\frac{50}{150}-\frac{3}{150}=\frac{47}{150}\)