Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(M\left(x\right)=x^4-2x^3+x^2-5x+1\)
\(N\left(x\right)=8x^4-5x^3+x^2-3\)
a) P(x) = -x4 - 3x3 + 6x - 7
Q(x) = x4 + 6x3 + 5
b) M(x) = P(x) + Q(x) = -x4 - 3x3 + 6x - 7 + (x4 + 6x3 + 5) = 3x3 + 6x - 2
c) M(-3) = 3.(-3)3 + 6.(-3) - 2 = -101
a) Sắp xếp P(x):-x4 - 3x3 + 6x - 7
Q(x) = x4 + 6x3 + 5
b) P(x) + Q(x) = (-x4- 3x3 + 6x - 7) + (x4 + 6x3 + 5)
= -x4 - 3x3 + 6x -7 + x4 + 6x3 + 5
= (-x4+ x4) + (-3x3 + 6x3) + 6x + (-7 + 5)
= 3x3 + 6x - 2
Vậy M(x) = 3x3 + 6x -2
c) Thay x = -3 vào biểu thức, ta có :
M(x) = 3(-3)3+ 6(-3) - 2
= -101
Hok tốt.
\(M\left(x\right)=3x^4-2x^3+5x^2-4x+1\)
\(N\left(x\right)=-3x^4+2x^3-5x^2+7x+5\)
\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)
\(=\left(3x^4-2x^3+5x^2-4x+1\right)+\left(-3x^4+2x^3-5x^2+7x+5\right)\)
\(=3x+6\)
\(Q\left(x\right)=M\left(x\right)-N\left(x\right)\)
\(=\left(3x^4-2x^3+5x^2-4x+1\right)-\left(-3x^4+2x^3-5x^2+7x+5\right)\)
\(=3x^4-2x^3+5x^2-4x+1+3x^4-2x^3+5x^2-7x-5\)
\(=6x^4-4x^3+10x^2-11x-4\)
a) A(x) = 5x4 - 5 + 6x3 + x4 - 5x - 12
= (5x4 + x4) + (- 5 - 12) + 6x3 - 5x
= 6x4 - 17 + 6x3 - 5x
= 6x4 + 6x3 - 5x - 17
B(x) = 8x4 + 2x3 - 2x4 + 4x3 - 5x - 15 - 2x2
= (8x4 - 2x4) + (2x3 + 4x3) - 5x - 15 - 2x2
= 4x4 + 6x3 - 5x - 15 - 2x2
= 4x4 + 6x3 - 2x2 - 5x - 15
b) C(x) = A(x) - B(x)
= 6x4 + 6x3 - 5x - 17 - (4x4 + 6x3 - 2x2 - 5x - 15)
= 6x4 + 6x3 - 5x - 17 - 4x4 - 6x3 + 2x2 + 5x + 15
= ( 6x4 - 4x4) + ( 6x3 - 6x3) + (- 5x + 5x) + (-17 + 15) + 2x2
= 2x4 - 2 + 2x2
= 2x4 + 2x2 - 2
Dễ mà bạn!
a)
M(x)= 5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3
M(x)= 2x^4-x^4+5x^3-4x^3-x^3-3x^2-x^2+1
M(x)= x^4+2x^2+1
b)
M(x)= x^4+2x^2+1
M(1)= 1^4+2.1^2+1
M(1)= 1+2+1
M(1)= 4
M(-1)= (-1)^4+2.(-1)^2+1
M(-1)= 1+2+1
M(-1)= 4
c) Vì x^4+2x^2+1 >= 1
Nên M(x)= x^4+2x^2+1 không có nghiệm
* M(x) = 5x3 + 2x4 - x2 + 3x2 - x3 - x4 + 1 - 4x3
= ( 2x4 - x4 ) + ( 5x3 - x3 - 4x3 ) + ( 3x2 - x2 ) + 1
= x4 + 2x2 + 1
* M(1) = 14 + 2 .12 + 1 = 1 + 2 . 1 + 1 = 4
M(-1) = (-1)4 + 2. (-1)2 + 1 = 1 + 2.1 + 1 = 4
* Ta có \(x^4\ge0\forall x,x^2\ge0\forall x\Rightarrow x^4+x^2+1\ge1>0\)
=> M(x) vô nghiệm
a) M + N = (6x2y + 8x + 7xy) + (5x2y + 7x + 3xy + 2)
= 6x2x + 8x + 7xy + 5x2y + 7x + 3xy + 2
= (6x2y + 5x2y) + (8x + 7x) + (7xy + 3xy) + 2
= 11x2y + 15x + 10xy + 2
M - N = (6x2y + 8x + 7xy) - (5x2y + 7x + 3xy + 2)
= 6x2y + 8x + 7xy - 5x2y - 7x - 3xy - 2
= (6x2y - 5x2y) + (8x - 7x) + (7xy - 3xy) - 2
= x2y + x + 7xy - 2
b) Sắp xếp : x4 + 2x3 + 3x2 - 5x
F(1) = 14 + 2.13 + 3.12 - 5.1
= 1 + 2 + 3 - 5
= 1
\(M+N\)
\(=\left(6x^2y+8x+7xy\right)+\left(5x^2y+7x+3xy+2\right)\)
\(=6x^2y+8x+7xy+5x^2y+7x+3xy+2\)
\(=\left(6x^2y+5x^2y\right)+\left(8x+7x\right)+\left(7xy+3xy\right)+2\)
\(=11x^2y+15x+10xy+2\)
a) Các đơn thức đồng dạng trong các đơn thức sau là: \(5x^2yz;-2x^2yz\) ; \(x^2yz\) ; \(0,2x^2yz\)
b) \(M\left(x\right)=3x^2+5x^3-x^2+x-3x-4\)
\(M\left(x\right)=(3x^2-x^2)+5x^3+(x-3x)-4\)
\(M\left(x\right)=2x^2+5x^3-2x-4\)
\(M\left(x\right)=5x^3+2x^2-2x-4\)
c) \(P+Q=\left(x^3x+3\right)+\left(2x^3+3x^2+x-1\right)\)
\(P+Q=x^3x+3+2x^3+3x^2+x-1\)
\(P+Q=\left(x^3+2x^3\right)+\left(x+x\right)+\left(3-1\right)+3x^2\)
\(P+Q=3x^3+2x+2+3x^2\)
a. M(x) = x2 -5x -2x3 + x4 + 1
= x4 - 2x3 + x2 - 5x + 1
N(x) = -5x3 -3 + 8x4 + x2
= 8x4 - 5x3 + x2 - 3
b. M(x) + N(x) = x4 - 2x3 + x2 - 5x + 1 + 8x4 - 5x3 + x2 - 3
= (x4 + 8x4) + (-2x3 - 5x3) + (x2 + x2 ) - 5x + (1 - 3)
= 9x4 - 7x3 + 2x2 - 5x - 2
M (x) - N (x) = x4 - 2x3 + x2 - 5x + 1 - ( 8x4 - 5x3 + x2 - 3)
= x4 - 2x3 + x2 - 5x + 1 - 8x4 + 5x3 - x2 + 3
= (x4 - 8x4 ) + ( -2x3 + 5x3 ) + (x2 - x2 ) - 5x + (1 + 3)
= -7x4 + 3x3 - 5x + 4