Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 3x3 . 5x2 = 15x5
b, 2x . ( 3x2 + 2x ) = 6x3 + 4x2
c, -3xy . ( 2x + 5y ) = -6x2y +-15xy2
d, 3x2. ( 6 - x2 + 2x ) = 18x2 - 3x3 + 6x3
e, ( x + 2 ) . ( x + 3 ) = x2 + 5x + 6
i, ( x - 4 ) . ( x + 4 ) = x2 - 16
h, ( 1 - 2x ) . ( 3x + 2 ) = 2 - 6x2 - x
k, ( x - y ) . ( x + y ) = x2 - y2
t, ( 2x + 1 ) . ( 4x2 - 2x + 1 ) = 8x3 - 1
a, 3x3 . 5x2 = 15x5
b, 2x . ( 3x2 + 2x ) = 6x3 + 4x2
c, -3xy . ( 2x + 5y ) = -6x2y +-15xy2
d, 3x2. ( 6 - x2 + 2x ) = 18x2 - 3x3 + 6x3
e, ( x + 2 ) . ( x + 3 ) = x2 + 5x + 6
i, ( x - 4 ) . ( x + 4 ) = x2 - 16
h, ( 1 - 2x ) . ( 3x + 2 ) = 2 - 6x2 - x
k, ( x - y ) . ( x + y ) = x2 - y2
t, ( 2x + 1 ) . ( 4x2 - 2x + 1 ) = 8x3 - 1
a) Đặt t = x2
bthuc <=> t2 - 7t + 16
Từ đây ta không thể phân tích được :)
b) x3 - 2x2 + 5x - 4
= x3 - x2 - x2 + x + 4x - 4
= x2( x - 1 ) - x( x - 1 ) + 4( x - 1 )
= ( x - 1 )( x2 - x + 4 )
c) x3 - 2x2 + x - 3 ( phân tích hổng ra :)) )
d) 3x3 - 4x2 + 12x - 4 ( phân tích hổng ra p2 :)) )
e) 6x3 + x2 + x + 1
= 6x3 + 3x2 - 2x2 - x + 2x + 1
= 3x2( 2x + 1 ) - x( 2x - 1 ) + ( 2x + 1 )
= ( 2x + 1 )( 3x2 - x + 1 )
f) 4x3 + 6x2 + 4x + 1
= 4x3 + 2x2 + 4x2 + 2x + 2x + 1
= 2x2( 2x + 1 ) + 2x( 2x + 1 ) + ( 2x + 1 )
= ( 2x + 1 )( 2x2 + 2x + 1 )
\(5X\left(X-2020\right)+X=2020\)
\(\Leftrightarrow5X^2-10100X+X=2020\)
\(\Leftrightarrow5X^2-10099X=2020\)
\(\Leftrightarrow5X^2-10099X-2020=0\)
\(\Leftrightarrow5X^2-10100X+x-2020=0\)
\(\Leftrightarrow5X\left(X-2020\right)+X-2020=0\)
\(\Leftrightarrow\left(X-2020\right)\left(5X+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-\frac{1}{5}\end{cases}}\)
\(4\left(x-5\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-5\right)\right]^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-5\right)-2x-1\right]\left[2\left(x-5\right)+2x+1\right]=0\)
\(\Leftrightarrow\left(2x-10-2x-1\right)\left(2x-10+2x+1\right)=0\)
\(\Leftrightarrow-11\left(4x-9\right)=0\)
\(\Leftrightarrow x=\frac{9}{4}\)
a) \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Leftrightarrow2x^2-10x-3x-2x^2=26\)
\(\Leftrightarrow-13x=26\Leftrightarrow x=-2\)
b) \(5x\left(x-1\right)=x-1\)
\(\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=\frac{1}{5}\end{array}\right.\)
c) \(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-5\\x=2\end{array}\right.\)
d) \(\left(2x-3\right)^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
\(\Leftrightarrow\left(x-8\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=8\\x=-\frac{2}{3}\end{array}\right.\)
e) \(3x^3-48x=0\)
\(\Leftrightarrow3x\left(x^2-16\right)=0\)
\(\Leftrightarrow3x\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=4\\x=-4\end{array}\right.\)
f) \(x^3+x^2-4x=4\)
\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=2\\x=-2\end{array}\right.\)
a) 4(x+2) - 7(2x - 1) + 9(3x - 4)=30
⇔4x+8 - 14x + 7 + 27x - 36 = 30
⇔ 17x = 51
⇔ x = 3
b) 2(5x - 8) - 3(4x - 5) = 4(3x - 4) + 11
⇔ 10x - 16 - 12x + 15 = 12x - 16 + 11
⇔ -14x = -4
⇔ x= \(\frac{2}{7}\)
c) 5x(1 - 2x) - 3x(x + 18) = 0
⇔ 5x - 10x\(^2\) - 3x\(^2\) -54x =0
⇔ -13x\(^2\) -49 x = 0
⇔ -x ( 13x + 49 ) =0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\13x+49=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{-49}{13}\end{matrix}\right.\)
d) 5x - 3{4x - 2[4x - 3(5x - 2)]} = 182
⇔ 5x - 3[ 4x - 2( 4x - 15x + 6 ) ]= 182
⇔5x - 3 ( 4x - 8x + 30x - 12 ) = 182
⇔ 5x - 3 ( 26x - 12 ) = 182
⇔ 5x - 78x + 36 = 182
⇔ - 73x = 146
⇔ x = -2
a) Ta có: \(\left(2x+3\right)^2-\left(5+x\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(2x+3+5+x\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(3x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\3x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-3\\3x=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-3}{2}\\x=\frac{-8}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{-3}{2};\frac{-8}{3}\right\}\)
b) Ta có: \(\left(2x+5\right)^2-\left(2x-5\right)^2=6x+8\)
\(\Leftrightarrow\left(2x+5+2x-5\right)\left(2x+5-2x+5\right)-6x-8=0\)
\(\Leftrightarrow40x-6x-8=0\)
\(\Leftrightarrow34x=8\)
\(\Leftrightarrow x=\frac{8}{34}=\frac{4}{17}\)
Vậy: \(x=\frac{4}{17}\)
c) Ta có: \(\left(4x+3\right)^2=4\left(x-1\right)^2\)
\(\Leftrightarrow16x^2+24x+9=4\left(x^2-2x+1\right)\)
\(\Leftrightarrow16x^2+24x+9-4x^2+8x-4=0\)
\(\Leftrightarrow12x^2+32x+5=0\)
\(\Leftrightarrow12x^2+2x+30x+5=0\)
\(\Leftrightarrow2x\left(6x+1\right)+5\left(6x+1\right)=0\)
\(\Leftrightarrow\left(6x+1\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}6x+1=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}6x=-1\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{6}\\x=\frac{-5}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{-1}{6};\frac{-5}{2}\right\}\)
d) Ta có: \(\left(7x-1\right)\left(3x-2\right)-49x^2+14x=1\)
\(\Leftrightarrow\left(7x-1\right)\left(3x-2\right)-\left(49x^2-14x+1\right)=0\)
\(\Leftrightarrow\left(7x-1\right)\left(3x-2\right)-\left(7x-1\right)^2=0\)
\(\Leftrightarrow\left(7x-1\right)\left[3x-2-\left(7x-1\right)\right]=0\)
\(\Leftrightarrow\left(7x-1\right)\left(3x-2-7x+1\right)=0\)
\(\Leftrightarrow\left(7x-1\right)\left(-4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}7x-1=0\\-4x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}7x=1\\-4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{7}\\x=\frac{-1}{4}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{7};\frac{-1}{4}\right\}\)
x^2 - 2x +3 nhe