Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét số hạng tổng quát của tổng trên:
\(\frac{n+(n+2)+\sqrt{n(n+2)}}{\sqrt{n}+\sqrt{n+2}}=\frac{(2n+2+\sqrt{n(n+2)})(\sqrt{n+2}-\sqrt{n})}{(\sqrt{n}+\sqrt{n+2})(\sqrt{n+2}-\sqrt{n})}\)
\(=\frac{(n+2)\sqrt{n+2}-n\sqrt{n}}{2}\)
Áp dụng vào bài:
\(P=\frac{3\sqrt{3}-1}{2}+\frac{5\sqrt{5}-3\sqrt{3}}{2}+\frac{7\sqrt{7}-5\sqrt{5}}{2}+...+\frac{121\sqrt{121}-119\sqrt{119}}{2}\)
\(=\frac{121\sqrt{121}-1}{2}=665\)
ta có : \(\dfrac{2n+\sqrt{n^2-1}}{\sqrt{n-1}+\sqrt{n+1}}=\dfrac{\left(2n+\sqrt{n^2-1}\right)\left(\sqrt{n-1}+\sqrt{n+1}\right)}{-2}\)
\(=\dfrac{2n\sqrt{n-1}+2n\sqrt{n+1}+\left(n-1\right)\sqrt{n+1}+\left(n+1\right)\sqrt{n-1}}{-2}\) \(=\dfrac{\sqrt{n-1}\left(3n+1\right)+\sqrt{n+1}\left(3n-1\right)}{-2}\)chung mẫu hết rồi cộng lại
lm lại nha :
ta có : \(\dfrac{2n+\sqrt{n^2-1}}{\sqrt{n-1}+\sqrt{n+1}}\) \(=\dfrac{\left(2n+\sqrt{n^2-1}\right)\left(\sqrt{n+1}-\sqrt{n-1}\right)}{2}\)
\(=\dfrac{2n\sqrt{n+1}-2n\sqrt{n-1}+\left(n+1\right)\sqrt{n-1}-\left(n-1\right)\sqrt{n+1}}{2}\)
\(=\dfrac{\left(n+1\right)\sqrt{n+1}-\left(n-1\right)\sqrt{n-1}}{2}\) cộng lại ...................
Xét: \(\frac{1}{n\sqrt{n-2}+\left(n-2\right)\sqrt{n}}=\frac{1}{\left(\sqrt{n}-\sqrt{n-2}\right)\sqrt{n\left(n-2\right)}}\)
\(=\frac{\sqrt{n}+\sqrt{n-2}}{2\sqrt{n\left(n-2\right)}}=\frac{1}{2}\left(\frac{\sqrt{n}+\sqrt{n-2}}{\sqrt{n\left(n-2\right)}}\right)\)
\(=\frac{1}{2}\left(\frac{1}{\sqrt{n-2}}-\frac{1}{\sqrt{n}}\right)\)
Từ đó ta thay vào:
\(C=\frac{1}{2}\cdot\left(1-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}+...+\frac{1}{\sqrt{199}}-\frac{1}{\sqrt{121}}\right)\)
\(C=\frac{1}{2}\cdot\left(1-\frac{1}{11}\right)\)
\(C=\frac{1}{2}\cdot\frac{10}{11}=\frac{5}{11}\)
Vậy C = 5/11
a) Trục căn thức ở mỗi số hạng của biểu thức A,ta có:
\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-...+\frac{1}{\sqrt{2007}-\sqrt{2008}}\)=\(\frac{\sqrt{2}+\sqrt{1}}{1-2}-\frac{\sqrt{3}+\sqrt{2}}{2-3}+\frac{\sqrt{3}+\sqrt{4}}{3-4}-...+\frac{\sqrt{2007}+\sqrt{2008}}{2007-2008}\)
= \(-\left(\sqrt{1}+\sqrt{2}\right)+\left(\sqrt{2}+\sqrt{3}\right)-\left(\sqrt{3}+\sqrt{4}\right)+...-\left(\sqrt{2007}+\sqrt{2008}\right)\)
=\(-1-\sqrt{2008}\)
b)Ta xét số hạng tổng quát: \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)=\(\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)=\(\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng vào biểu thức B ta được:
B= \(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-...+\frac{1}{\sqrt{120}}-\frac{1}{\sqrt{121}}=1-\frac{1}{11}\)= \(\frac{10}{11}\)
\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+...+\frac{1}{\sqrt{2007}-\sqrt{2008}}\)
\(=\frac{-1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}-\frac{1}{\sqrt{4}-\sqrt{3}}+\frac{1}{\sqrt{5}-\sqrt{4}}-....+\frac{1}{\sqrt{2007}-\sqrt{2006}}-\frac{1}{\sqrt{2008}-\sqrt{2007}}\)
\(=\frac{-1\cdot\left(\sqrt{2}+\sqrt{1}\right)}{2-1}+\frac{1\cdot\left(\sqrt{3}+\sqrt{2}\right)}{3-2}-\frac{1\cdot\left(\sqrt{4}+\sqrt{3}\right)}{4-3}+\frac{1\cdot\left(\sqrt{5}+\sqrt{4}\right)}{5-4}-...+\frac{1\cdot\left(\sqrt{2007}+\sqrt{2006}\right)}{2007-2006}-\frac{1 \left(\sqrt{2008}+\sqrt{2007}\right)}{2008-2007}\)
\(=-1-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+\sqrt{4}+\sqrt{5}-...+\sqrt{2006}+\sqrt{2007}-\sqrt{2007}-\sqrt{2008}\)
\(=-1-\sqrt{2008}\)
Dạng tổng quát: Với n là các số lẻ lớn hơn hoặc bằng 3 thì \(\frac{1}{n\sqrt{n-2}+\left(n-2\right)\sqrt{n}}=\frac{1}{\sqrt{n\left(n-2\right)}\left(\sqrt{n}+\sqrt{n-2}\right)}=\frac{1}{\sqrt{n\left(n-2\right)}.\frac{2}{\sqrt{n}-\sqrt{n-2}}}=\frac{\sqrt{n}-\sqrt{n-2}}{2\sqrt{n\left(n-2\right)}}=\frac{1}{2}\left(\frac{1}{\sqrt{n-2}}-\frac{1}{\sqrt{n}}\right)\)Áp dụng, ta được: \(C=\frac{1}{3\sqrt{1}+1\sqrt{3}}+\frac{1}{5\sqrt{3}+3\sqrt{5}}+...+\frac{1}{121\sqrt{119}+119\sqrt{121}}=\frac{1}{2}\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}+...+\frac{1}{\sqrt{119}}-\frac{1}{\sqrt{121}}\right)=\frac{1}{2}\left(1-\frac{1}{11}\right)=\frac{5}{11}\)Vậy C = 5/11
Xét :\(\frac{1}{\left(a+2\right)\sqrt{a}+a\sqrt{a+2}}=\frac{1}{\sqrt{a}.\sqrt{a+2}\left(\sqrt{a+2}+\sqrt{a}\right)}=\frac{\sqrt{a+2}-\sqrt{a}}{2\sqrt{a}.\sqrt{a+2}}=\frac{1}{2\sqrt{a}}-\frac{1}{2\sqrt{a+2}}\)
Xét:
\(C=\frac{1}{3\sqrt{1}+1\sqrt{3}}+\frac{1}{5\sqrt{3}+3\sqrt{5}}+...+\frac{1}{121\sqrt{119}+119\sqrt{121}}\)
\(=\frac{1}{2}-\frac{1}{2\sqrt{3}}+\frac{1}{2\sqrt{3}}-\frac{1}{2\sqrt{5}}+\frac{1}{2\sqrt{5}}-\frac{1}{2\sqrt{7}}+...+\frac{1}{2\sqrt{119}}-\frac{1}{2\sqrt{121}}\)
\(=\frac{1}{2}-\frac{1}{2\sqrt{121}}=\frac{1}{2}-\frac{1}{2.11}=\frac{5}{11}\)
Sao tổng này không thấy quy luật đâu hết mà dùng dấu ... vậy?
tui làm đc ròi ạ